Menu Close

pi-2-0-dx-1-tan-2014-x-pie-q-p-Find-2p-q-




Question Number 133036 by liberty last updated on 18/Feb/21
∫^( (π/2)) _0  (dx/(1+tan^(2014) (x))) = ((πe^q )/p)  Find 2p−q.
0π2dx1+tan2014(x)=πeqpFind2pq.
Answered by liberty last updated on 18/Feb/21
I=∫^( (π/2)) _0  (dx/(1+tan^(2014) (x)))=∫^0 _(π/2)  ((tan^(2014) (x))/(1+tan^(2014) (x))) (−dx)  I=∫^(π/2) _0  ((tan^(2014) (x))/(1+tan^(2014) (x))) dx   we get 2I = ∫^( (π/2)) _0 ((1+tan^(2014) (x))/(1+tan^(2014) (x)))dx  I=(1/2). (π/2) = (π/4) = ((πe^q )/p)  → { ((q=0)),((p=4)) :} ⇒2p−q = 8
I=0π2dx1+tan2014(x)=π20tan2014(x)1+tan2014(x)(dx)I=0π2tan2014(x)1+tan2014(x)dxweget2I=0π21+tan2014(x)1+tan2014(x)dxI=12.π2=π4=πeqp{q=0p=42pq=8
Answered by mathmax by abdo last updated on 20/Feb/21
I=∫_0 ^(π/2)  (dx/(1+tan^(2014) x)) ⇒I=_(tanx=z)   ∫_0 ^∞    (dz/((1+z^2 )(1+z^(2014) )))  I=_(z=(1/t))    −∫_0 ^∞    ((−dt)/(t^2 (1+(1/t^2 ))(1+(1/t^(2014) )))) =∫_0 ^∞ (t^(2014) /((1+t^2 )(1+t^(2014) ))) ⇒  2I =∫_0 ^∞   ((1/((1+z^2 )(1+z^(2014) )))+(z^(2014) /((1+z^2 )(1+z^(2014) ))))dz =∫_0 ^∞  (dz/(1+z^2 ))  =(π/2) ⇒I =(π/4) =(π/p)e^q  ⇒p=4 and q=0 ⇒2p−q=8
I=0π2dx1+tan2014xI=tanx=z0dz(1+z2)(1+z2014)I=z=1t0dtt2(1+1t2)(1+1t2014)=0t2014(1+t2)(1+t2014)2I=0(1(1+z2)(1+z2014)+z2014(1+z2)(1+z2014))dz=0dz1+z2=π2I=π4=πpeqp=4andq=02pq=8

Leave a Reply

Your email address will not be published. Required fields are marked *