Menu Close

pi-2-pi-2-sin-x-cos-x-dx-pi-2-pi-2-sin-x-cos-x-cos-2nx-dx-pi-2-pi-2-sin-x-cos-x-sin-2nx-dx-n-N-




Question Number 630 by 123456 last updated on 15/Feb/15
∫_(−(π/2)) ^(+(π/2)) ((sin x)/(cos x))dx  ∫_(−(π/2)) ^(+(π/2)) ((sin x)/(cos x))cos(2nx)dx  ∫_(−(π/2)) ^(+(π/2)) ((sin x)/(cos x))sin(2nx)dx  n∈N^∗
$$\underset{−\frac{\pi}{\mathrm{2}}} {\overset{+\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}{dx} \\ $$$$\underset{−\frac{\pi}{\mathrm{2}}} {\overset{+\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\mathrm{cos}\left(\mathrm{2}{nx}\right){dx} \\ $$$$\underset{−\frac{\pi}{\mathrm{2}}} {\overset{+\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\mathrm{sin}\left(\mathrm{2}{nx}\right){dx} \\ $$$${n}\in\mathbb{N}^{\ast} \\ $$
Commented by prakash jain last updated on 15/Feb/15
∫_(−(π/2)) ^(π/2) ((sin x)/(cos x)) dx=∫_(−(π/2) ) ^0 ((sin x)/(cos x)) dx+∫_0 ^(π/2) ((sin x)/(cos x))dx  both integral dont converge.
$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\:{dx}=\int_{−\frac{\pi}{\mathrm{2}}\:} ^{\mathrm{0}} \frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\:{dx}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}{dx} \\ $$$$\mathrm{both}\:\mathrm{integral}\:\mathrm{dont}\:\mathrm{converge}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *