pi-2-pi-e-cosx-1-e-cosx-sinx-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 68043 by mhmd last updated on 03/Sep/19 ∫π/2πecosx1−ecosxsinxdx Commented by mathmax by abdo last updated on 03/Sep/19 letI=∫π2πecosx1−ecosxsinxdxvha7gementcosx=−tgiveI=∫01e−t1−e−t(dt)=∫01e−t1−e−tdtafterwedothechangement1−e−t=u⇒1−e−t=u2⇒e−t=1−u2⇒−t=ln(1−u2)⇒t=−ln(1−u2)⇒I=∫01−e−1(1−u2)u×2u1−u2du=2∫01−e−1u2du=23[u3]01−e−1=23{1−e−1}3=23(1−e−1)1−1e=23(1−1e)e−1e=23(e−1e)e−1e⇒I=2(e−1)e−13ee. Answered by mr W last updated on 03/Sep/19 =−∫π/2πecosx1−ecosxdcosx=∫−10et1−etdt=∫−101−etdet=∫1e11−udu=−∫1e11−ud(1−u)=−23[(1−u)32]1e1=23(1−1e)32 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-133579Next Next post: Question-68046 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.