Menu Close

pi-2-pi-e-cosx-1-e-cosx-sinx-dx-




Question Number 68043 by mhmd last updated on 03/Sep/19
∫_(π/2) ^π e^(cosx) (√(1−e^(cosx) )) sinx dx
π/2πecosx1ecosxsinxdx
Commented by mathmax by abdo last updated on 03/Sep/19
let I =∫_(π/2) ^π  e^(cosx) (√(1−e^(cosx) ))sinx dx  vha7gement  cosx=−t give  I =∫_0 ^1  e^(−t) (√(1−e^(−t) ))(dt) =∫_0 ^1  e^(−t) (√(1−e^(−t) ))dt   after we do the  changement (√(1−e_ ^(−t) ))=u ⇒1−e^(−t)  =u^2  ⇒e^(−t)  =1−u^2  ⇒  −t =ln(1−u^2 ) ⇒t =−ln(1−u^2 ) ⇒  I =∫_0 ^(√(1−e^(−1) ))     (1−u^2 )u ×((2u)/(1−u^2 ))du =2 ∫_0 ^(√(1−e^(−1) ))    u^(2 ) du  =(2/3)[u^3 ]_0 ^(√(1−e^(−1) ))    =(2/3){(√(1−e^(−1) ))}^3  =(2/3)(1−e^(−1) )(√(1−(1/e)))  =(2/3)(1−(1/e))((√(e−1))/( (√e))) =(2/3)(((e−1)/e))((√(e−1))/( (√e)))   ⇒ I =((2(e−1)(√(e−1)))/(3e(√e))) .
letI=π2πecosx1ecosxsinxdxvha7gementcosx=tgiveI=01et1et(dt)=01et1etdtafterwedothechangement1et=u1et=u2et=1u2t=ln(1u2)t=ln(1u2)I=01e1(1u2)u×2u1u2du=201e1u2du=23[u3]01e1=23{1e1}3=23(1e1)11e=23(11e)e1e=23(e1e)e1eI=2(e1)e13ee.
Answered by mr W last updated on 03/Sep/19
=−∫_(π/2) ^π e^(cosx) (√(1−e^(cosx) )) d cos x  =∫_(−1) ^0 e^t (√(1−e^t )) dt  =∫_(−1) ^0 (√(1−e^t )) de^t   =∫_(1/e) ^1 (√(1−u)) du  =−∫_(1/e) ^1 (√(1−u)) d(1−u)  =−(2/3)[(1−u)^(3/2) ]_(1/e) ^1   =(2/3)(1−(1/e))^(3/2)
=π/2πecosx1ecosxdcosx=10et1etdt=101etdet=1e11udu=1e11ud(1u)=23[(1u)32]1e1=23(11e)32

Leave a Reply

Your email address will not be published. Required fields are marked *