Menu Close

pi-4-pi-4-sec-2-x-tgx-2-dx-




Question Number 141387 by cesarL last updated on 18/May/21
∫_(−π/4) ^(π/4) (sec^2 x+tgx)^2 dx
π/4π/4(sec2x+tgx)2dx
Answered by MJS_new last updated on 18/May/21
∫_(−π/4) ^(π/4) (sec^2  x +tan x)^2  dx=       [t=tan x → dx=cos^2  x dt]  =∫_(−1) ^1 (((t^2 +t+1)^2 )/(t^2 +1))dt=∫_(−1) ^1 (t^2 +2t+2−(1/(t^2 +1)))dt=  =[(t^3 /3)+t^2 +2t−arctan t]_(−1) ^1 =((14)/3)−(π/2)
π/4π/4(sec2x+tanx)2dx=[t=tanxdx=cos2xdt]=11(t2+t+1)2t2+1dt=11(t2+2t+21t2+1)dt==[t33+t2+2tarctant]11=143π2

Leave a Reply

Your email address will not be published. Required fields are marked *