Question Number 142656 by qaz last updated on 03/Jun/21
$$\int_{−\pi} ^{\pi} \frac{\mathrm{xsin}\:\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=? \\ $$
Answered by Ar Brandon last updated on 03/Jun/21
$$\xi\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{xsin}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\Rightarrow\xi'\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{cos}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$\xi'\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\pi} \mathrm{cos}\left(\mathrm{ax}\right)\mathrm{dx}−\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cos}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=−\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cos}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$\xi''\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{xsin}\left(\mathrm{ax}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\xi\left(\mathrm{a}\right)\Rightarrow\xi''\left(\mathrm{a}\right)−\xi\left(\mathrm{a}\right)=\mathrm{0} \\ $$$$\xi\left(\mathrm{a}\right)=\alpha\mathrm{e}^{\mathrm{a}} +\beta\mathrm{e}^{−\mathrm{a}} ,\:\xi\left(\mathrm{0}\right)=\alpha+\beta=\mathrm{0}…\mathrm{eqn}\left(\mathrm{1}\right) \\ $$$$\xi'\left(\mathrm{a}\right)=\alpha\mathrm{e}^{\mathrm{a}} −\beta\mathrm{e}^{−\mathrm{a}} ,\:\xi'\left(\mathrm{0}\right)=\alpha−\beta=\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)…\mathrm{eqn}\left(\mathrm{2}\right) \\ $$$$\mathrm{eqn}\left(\mathrm{1}\right)\:\&\:\mathrm{eqn}\left(\mathrm{2}\right)\:\Rightarrow\mathrm{2}\alpha=\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right),\:\mathrm{2}\beta=\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)−\pi \\ $$$$\Rightarrow\xi\left(\mathrm{a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)\right)\left(\mathrm{e}^{\mathrm{a}} −\mathrm{e}^{−\mathrm{a}} \right)=\left(\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)\right)\mathrm{sinh}\left(\mathrm{a}\right) \\ $$$$\int_{−\pi} ^{\pi} \frac{\mathrm{xsinx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}=\mathrm{2}\xi\left(\mathrm{1}\right)=\mathrm{2}\left(\pi−\mathrm{tan}^{−\mathrm{1}} \left(\pi\right)\right)\mathrm{sinh}\left(\mathrm{1}\right) \\ $$
Commented by Dwaipayan Shikari last updated on 03/Jun/21
$${Nice}! \\ $$
Commented by Ar Brandon last updated on 03/Jun/21
$$\mathrm{Yes}\:\mathrm{bro}.\:\mathrm{But}\:\mathrm{final}\:\mathrm{answer}\:\mathrm{seems}\:\mathrm{not}\:\mathrm{to} \\ $$$$\mathrm{be}\:\mathrm{correct}.\:\mathrm{Still}\:\mathrm{checking}… \\ $$
Commented by qaz last updated on 03/Jun/21
$$\int_{−\pi} ^{\pi} \mathrm{cos}\:\left(\mathrm{ax}\right)\mathrm{dx}\neq\mathrm{0} \\ $$
Commented by Ar Brandon last updated on 03/Jun/21
$$\mathrm{Hmmm}…\: \\ $$$$\mathrm{Right}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{approximately} \\ $$$$\mathrm{1},\mathrm{682}\:\mathrm{984}\:\mathrm{232}.\:\mathrm{Help}\:\mathrm{if}\:\mathrm{possible}. \\ $$
Commented by mindispower last updated on 03/Jun/21
$${nice}\:{sir}\: \\ $$
Answered by mindispower last updated on 04/Jun/21
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{2}{xsin}\left({x}\right)}{\left({x}+{i}\right)\left({x}−{i}\right)}{dx} \\ $$$$={Re}\left\{\int_{\mathrm{0}} ^{\pi} \frac{{sin}\left({x}\right)}{{x}+{i}}{dx}\right\} \\ $$$$={Re}\int_{{i}} ^{\pi+{i}} \frac{{sin}\left({t}−{i}\right)}{{t}}{dt} \\ $$$$={Re}\int_{{i}} ^{\pi+{i}} \frac{{sin}\left({t}\right){cos}\left({i}\right)−{cos}\left({t}\right){sin}\left({i}\right)}{{t}} \\ $$$$={Re}\left\{{cos}\left({i}\right)\int_{{i}} ^{\pi+{i}} \frac{{sin}\left({t}\right)}{{t}}{dt}−{sin}\left({i}\right)\int_{{i}} ^{\pi+{i}} \frac{{cos}\left({t}\right)}{{t}}{dx}\right\} \\ $$$$={Re}\left\{{cos}\left({i}\right)\left({Si}\left(\pi+{i}\right)−{Si}\left({i}\right)\right)−{sin}\left({i}\right)\left({Ci}\left({i}\right)−{Ci}\left({i}+\pi\right)\right\}\right. \\ $$$${cos}\left({i}\right)={ch}\left(\mathrm{1}\right),{sin}\left({i}\right)={ish}\left(\mathrm{1}\right) \\ $$$${Si}=\int_{\mathrm{0}} ^{{x}} \frac{{sin}\left({t}\right)}{{t}},{Ci}=\int_{{x}} ^{\infty} \frac{{cos}\left({t}\right)}{{t}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ch}\left(\mathrm{1}\right)\left({si}\left(\pi+{i}\right)+{si}\left(\pi−{i}\right)−{si}\left({i}\right)−{si}\left(−{i}\right)\right) \\ $$$$−{sh}\left(\mathrm{1}\right)\left({iCi}\left({i}\right)−{iCi}\left({i}+\pi\right)\right)−{sh}\left(−{iCi}\left(−{i}\right)+{iCi}\left(\pi−{i}\right)\right) \\ $$$$ \\ $$