Menu Close

pi-pi-xsin-x-1-x-2-dx-




Question Number 142656 by qaz last updated on 03/Jun/21
∫_(−π) ^π ((xsin x)/(1+x^2 ))dx=?
ππxsinx1+x2dx=?
Answered by Ar Brandon last updated on 03/Jun/21
ξ(a)=∫_0 ^π ((xsin(ax))/(1+x^2 ))dx⇒ξ′(a)=∫_0 ^π ((x^2 cos(ax))/(1+x^2 ))dx  ξ′(a)=∫_0 ^π cos(ax)dx−∫_0 ^π ((cos(ax))/(1+x^2 ))dx=−∫_0 ^π ((cos(ax))/(1+x^2 ))dx  ξ′′(a)=∫_0 ^π ((xsin(ax))/(1+x^2 ))dx=ξ(a)⇒ξ′′(a)−ξ(a)=0  ξ(a)=αe^a +βe^(−a) , ξ(0)=α+β=0...eqn(1)  ξ′(a)=αe^a −βe^(−a) , ξ′(0)=α−β=π−tan^(−1) (π)...eqn(2)  eqn(1) & eqn(2) ⇒2α=π−tan^(−1) (π), 2β=tan^(−1) (π)−π  ⇒ξ(a)=(1/2)(π−tan^(−1) (π))(e^a −e^(−a) )=(π−tan^(−1) (π))sinh(a)  ∫_(−π) ^π ((xsinx)/(1+x^2 ))dx=2ξ(1)=2(π−tan^(−1) (π))sinh(1)
ξ(a)=0πxsin(ax)1+x2dxξ(a)=0πx2cos(ax)1+x2dxξ(a)=0πcos(ax)dx0πcos(ax)1+x2dx=0πcos(ax)1+x2dxξ(a)=0πxsin(ax)1+x2dx=ξ(a)ξ(a)ξ(a)=0ξ(a)=αea+βea,ξ(0)=α+β=0eqn(1)ξ(a)=αeaβea,ξ(0)=αβ=πtan1(π)eqn(2)eqn(1)&eqn(2)2α=πtan1(π),2β=tan1(π)πξ(a)=12(πtan1(π))(eaea)=(πtan1(π))sinh(a)ππxsinx1+x2dx=2ξ(1)=2(πtan1(π))sinh(1)
Commented by Dwaipayan Shikari last updated on 03/Jun/21
Nice!
Nice!
Commented by Ar Brandon last updated on 03/Jun/21
Yes bro. But final answer seems not to  be correct. Still checking...
Yesbro.Butfinalanswerseemsnottobecorrect.Stillchecking
Commented by qaz last updated on 03/Jun/21
∫_(−π) ^π cos (ax)dx≠0
ππcos(ax)dx0
Commented by Ar Brandon last updated on 03/Jun/21
Hmmm...   Right answer is approximately  1,682 984 232. Help if possible.
HmmmRightanswerisapproximately1,682984232.Helpifpossible.
Commented by mindispower last updated on 03/Jun/21
nice sir
nicesir
Answered by mindispower last updated on 04/Jun/21
∫_0 ^π ((2xsin(x))/((x+i)(x−i)))dx  =Re{∫_0 ^π ((sin(x))/(x+i))dx}  =Re∫_i ^(π+i) ((sin(t−i))/t)dt  =Re∫_i ^(π+i) ((sin(t)cos(i)−cos(t)sin(i))/t)  =Re{cos(i)∫_i ^(π+i) ((sin(t))/t)dt−sin(i)∫_i ^(π+i) ((cos(t))/t)dx}  =Re{cos(i)(Si(π+i)−Si(i))−sin(i)(Ci(i)−Ci(i+π)}  cos(i)=ch(1),sin(i)=ish(1)  Si=∫_0 ^x ((sin(t))/t),Ci=∫_x ^∞ ((cos(t))/t)dt  =(1/2)ch(1)(si(π+i)+si(π−i)−si(i)−si(−i))  −sh(1)(iCi(i)−iCi(i+π))−sh(−iCi(−i)+iCi(π−i))
0π2xsin(x)(x+i)(xi)dx=Re{0πsin(x)x+idx}=Reiπ+isin(ti)tdt=Reiπ+isin(t)cos(i)cos(t)sin(i)t=Re{cos(i)iπ+isin(t)tdtsin(i)iπ+icos(t)tdx}=Re{cos(i)(Si(π+i)Si(i))sin(i)(Ci(i)Ci(i+π)}cos(i)=ch(1),sin(i)=ish(1)Si=0xsin(t)t,Ci=xcos(t)tdt=12ch(1)(si(π+i)+si(πi)si(i)si(i))sh(1)(iCi(i)iCi(i+π))sh(iCi(i)+iCi(πi))

Leave a Reply

Your email address will not be published. Required fields are marked *