Menu Close

please-0-xlogx-1-x-2-2-dx-




Question Number 11420 by ainstain last updated on 25/Mar/17
please    ∫_0 ^∞ ((xlogx)/((1+x^2 )^2 ))dx=
please0xlogx(1+x2)2dx=
Commented by FilupS last updated on 26/Mar/17
is log(x) in base 10 or base e?
islog(x)inbase10orbasee?
Answered by sm3l2996 last updated on 25/Mar/17
{_(v′=(x/((1+x^2 )^2 ))) ^(u=log(x)) ⇒{_(v=((−1)/(2(1+x^2 )))) ^(u^′ =(1/x))   I=∫_0 ^∞ ((xlog(x))/((1+x^2 )^2 ))dx=[((−log(x))/(2(1+x^2 )))]_0 ^∞ +∫_0 ^∞ (dx/(2x(1+x^2 )))  I=lim_(x→∞) (−((log(x))/(2(1+x^2 ))))−lim_(x→0) (−((log(x))/(2(1+x^2 ))))+(1/2)∫_0 ^∞ (dx/(x(1+x^2 )))  (1/(x(1+x^2 )))=(a/x)+((bx+c)/(1+x^2 ))  a=1;   {_(((c−b)/2)−1=((−1)/2)) ^(((b+c)/2)+1=(1/2)) ⇔{_(c−b=1) ^(b+c=−1)   b=−1; c=0  so: (1/(x(1+x^2 )))=(1/x)−(x/(1+x^2 ))  ∫_0 ^∞ (dx/(x(1+x^2 )))=∫_0 ^∞ (dx/x)−∫_0 ^∞ ((xdx)/(1+x^2 ))  =[log∣x∣−(1/2)log∣1+x^2 ∣]_0 ^∞   =lim_(x→+∞) log((x/( (√(1+x^2 )))))−lim_(x→0) log((x/( (√(1+x^2 )))))  I=lim_(x→+∞) log((x/( (√(1+x^2 )))))−lim_(x→0) (log((x/( (√(1+x^2 )))))+((log(x))/(2(1+x^2 ))))
{v=x(1+x2)2u=log(x){v=12(1+x2)u=1xI=0xlog(x)(1+x2)2dx=[log(x)2(1+x2)]0+0dx2x(1+x2)I=limx(log(x)2(1+x2))limx0(log(x)2(1+x2))+120dxx(1+x2)1x(1+x2)=ax+bx+c1+x2a=1;{cb21=12b+c2+1=12{cb=1b+c=1b=1;c=0so:1x(1+x2)=1xx1+x20dxx(1+x2)=0dxx0xdx1+x2=[logx12log1+x2]0=limlogx+(x1+x2)limlogx0(x1+x2)I=limlogx+(x1+x2)limx0(log(x1+x2)+log(x)2(1+x2))
Commented by sm3l2996 last updated on 25/Mar/17
working
working
Answered by ajfour last updated on 26/Mar/17
zero
zero

Leave a Reply

Your email address will not be published. Required fields are marked *