Question Number 12500 by FilupS last updated on 24/Apr/17

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 24/Apr/17
![e^(1/x) =t⇒(1/x)=lnt⇒(lnx+c)^′ =lnt⇒ ∫(lnx+c)^′ dx=∫lntdt=tlnt−∫t×(1/t)dt= =(lnt−1)t+C(=lnk) =t.ln((t/e))+lnk=ln[k.((t/e))^t ] ⇒lnx+c(=lnk^′ )=ln(k((t/e))^t )⇒k^′ x=k((t/e))^t x=b.((e^(1/x) /e))^e^(1/x) =b.(e^((1/x)−1) )^e^(1/x) =b.(e^((1−x)/x) )^e^(1/x) m=(1/b)=constant. b=(k/k^′ )>0 lnx=lnb+e^(1/x) .ln(e^((1−x)/x) )=lnb+e^(1/x) .(((1−x)/x)) ln(x/b)=e^(1/x) .(((1−x)/x))⇒e^(1/x) =((xln(mx))/(1−x)) I=∫((xln(mx))/(1−x))dx=∫(((ln(mx))/(1−x))−ln(mx))dx= I_1 =∫ln(mx)dx=xln(mx)−∫x×(m/(mx))dx= =xln(mx)−x+n=x(ln(mx)−1)+n. I_2 =∫((ln(mx))/(1−x))dx=ln(1−x).ln(mx)−∫ln(1−x)×(1/x)dx= I_3 =∫ln(1−x)×(1/x)dx=lnx.ln(1−x)−∫((−lnx)/(1−x))dx= =lnx.ln(1−x)+lnx.ln(1−x)−∫((ln(1−x))/x)dx(=I_3 ) I_3 =lnx.ln(1−x)+p I=I_1 +I_2 +I_3 =x(ln(mx)−1)+n+ +ln(1−x).ln(mx)−I_3 +I_3 ⇒ I=[x+ln(1−x)].ln(mx)−x+n . m,n,p∈R, are constants.](https://www.tinkutara.com/question/Q12505.png)
Commented by mrW1 last updated on 24/Apr/17

Commented by ajfour last updated on 24/Apr/17

Commented by FilupS last updated on 24/Apr/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 24/Apr/17
