Menu Close

Please-help-explain-how-to-solve-e-1-x-dx-




Question Number 12500 by FilupS last updated on 24/Apr/17
Please help explain how to solve  ∫e^(1/x) dx
Pleasehelpexplainhowtosolvee1xdx
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 24/Apr/17
e^(1/x) =t⇒(1/x)=lnt⇒(lnx+c)^′ =lnt⇒  ∫(lnx+c)^′ dx=∫lntdt=tlnt−∫t×(1/t)dt=  =(lnt−1)t+C(=lnk)  =t.ln((t/e))+lnk=ln[k.((t/e))^t ]  ⇒lnx+c(=lnk^′ )=ln(k((t/e))^t )⇒k^′ x=k((t/e))^t   x=b.((e^(1/x) /e))^e^(1/x)  =b.(e^((1/x)−1) )^e^(1/x)  =b.(e^((1−x)/x)   )^e^(1/x)    m=(1/b)=constant.    b=(k/k^′ )>0  lnx=lnb+e^(1/x) .ln(e^((1−x)/x) )=lnb+e^(1/x) .(((1−x)/x))  ln(x/b)=e^(1/x) .(((1−x)/x))⇒e^(1/x) =((xln(mx))/(1−x))  I=∫((xln(mx))/(1−x))dx=∫(((ln(mx))/(1−x))−ln(mx))dx=  I_1 =∫ln(mx)dx=xln(mx)−∫x×(m/(mx))dx=  =xln(mx)−x+n=x(ln(mx)−1)+n.  I_2 =∫((ln(mx))/(1−x))dx=ln(1−x).ln(mx)−∫ln(1−x)×(1/x)dx=  I_3 =∫ln(1−x)×(1/x)dx=lnx.ln(1−x)−∫((−lnx)/(1−x))dx=  =lnx.ln(1−x)+lnx.ln(1−x)−∫((ln(1−x))/x)dx(=I_3 )  I_3 =lnx.ln(1−x)+p  I=I_1 +I_2 +I_3 =x(ln(mx)−1)+n+                                +ln(1−x).ln(mx)−I_3                                   +I_3 ⇒  I=[x+ln(1−x)].ln(mx)−x+n .  m,n,p∈R, are constants.
e1x=t1x=lnt(lnx+c)=lnt(lnx+c)dx=lntdt=tlntt×1tdt==(lnt1)t+C(=lnk)=t.ln(te)+lnk=ln[k.(te)t]lnx+c(=lnk)=ln(k(te)t)kx=k(te)tx=b.(e1xe)e1x=b.(e1x1)e1x=b.(e1xx)e1xm=1b=constant.b=kk>0lnx=lnb+e1x.ln(e1xx)=lnb+e1x.(1xx)lnxb=e1x.(1xx)e1x=xln(mx)1xI=xln(mx)1xdx=(ln(mx)1xln(mx))dx=I1=ln(mx)dx=xln(mx)x×mmxdx==xln(mx)x+n=x(ln(mx)1)+n.I2=ln(mx)1xdx=ln(1x).ln(mx)ln(1x)×1xdx=I3=ln(1x)×1xdx=lnx.ln(1x)lnx1xdx==lnx.ln(1x)+lnx.ln(1x)ln(1x)xdx(=I3)I3=lnx.ln(1x)+pI=I1+I2+I3=x(ln(mx)1)+n++ln(1x).ln(mx)I3+I3I=[x+ln(1x)].ln(mx)x+n.m,n,pR,areconstants.
Commented by mrW1 last updated on 24/Apr/17
Can you check if (dI/dx)=e^(1/x)  ?
CanyoucheckifdIdx=e1x?
Commented by ajfour last updated on 24/Apr/17
line #3 :  (t−1)ln t  should be                       (ln t−1)t .
You can't use 'macro parameter character #' in math mode(lnt1)t.
Commented by FilupS last updated on 24/Apr/17
according to wolframalpha:  ∫e^(1/x) dx=e^(1/x) x−Ei((1/x))  Ei(x)=−∫_(−x) ^( ∞) (1/t)e^(−t) dt
accordingtowolframalpha:e1xdx=e1xxEi(1x)Ei(x)=x1tetdt
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 24/Apr/17
you are right.it is fixed.
youareright.itisfixed.

Leave a Reply

Your email address will not be published. Required fields are marked *