Menu Close

please-help-me-find-the-term-independent-of-x-in-the-expansion-of-x-3-x-12-




Question Number 70310 by Rio Michael last updated on 03/Oct/19
please help me find the term independent of x  in the expansion of         (x + (3/x))^(−12 )
$${please}\:{help}\:{me}\:{find}\:{the}\:{term}\:{independent}\:{of}\:{x} \\ $$$${in}\:{the}\:{expansion}\:{of}\: \\ $$$$\:\:\:\:\:\:\left({x}\:+\:\frac{\mathrm{3}}{{x}}\right)^{−\mathrm{12}\:} \\ $$
Commented by mr W last updated on 03/Oct/19
all terms are x dependent!
$${all}\:{terms}\:{are}\:{x}\:{dependent}! \\ $$
Answered by MJS last updated on 03/Oct/19
(((x^2 +3)/x))^(−12) =((x/(x^2 +3)))^(12) ⇒ no term independent of x
$$\left(\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}}\right)^{−\mathrm{12}} =\left(\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{3}}\right)^{\mathrm{12}} \Rightarrow\:\mathrm{no}\:\mathrm{term}\:\mathrm{independent}\:\mathrm{of}\:{x} \\ $$
Answered by mind is power last updated on 03/Oct/19
(x+(3/x))^(12) ?
$$\left({x}+\frac{\mathrm{3}}{{x}}\right)^{\mathrm{12}} ? \\ $$
Commented by Kunal12588 last updated on 03/Oct/19
then answer would be 7th term.
$${then}\:{answer}\:{would}\:{be}\:\mathrm{7}{th}\:{term}. \\ $$
Commented by Rio Michael last updated on 03/Oct/19
thanks guys
$${thanks}\:{guys} \\ $$
Commented by Rio Michael last updated on 03/Oct/19
no , to the −12, it came on an official examination paper  and i tried and couldnt solve
$${no}\:,\:{to}\:{the}\:−\mathrm{12},\:{it}\:{came}\:{on}\:{an}\:{official}\:{examination}\:{paper} \\ $$$${and}\:{i}\:{tried}\:{and}\:{couldnt}\:{solve} \\ $$
Answered by MJS last updated on 03/Oct/19
(x+(3/x))^(−12) =((x/(x^2 +3)))^(12) =  =(1/((x^2 +3)^6 ))−((18)/((x^2 +3)^7 ))+((135)/((x^2 +3)^8 ))−((540)/((x^2 +3)^9 ))+((1215)/((x^2 +3)^(10) ))−((1458)/((x^2 +3)^(11) ))+((729)/((x^2 +3)^(12) ))
$$\left({x}+\frac{\mathrm{3}}{{x}}\right)^{−\mathrm{12}} =\left(\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{3}}\right)^{\mathrm{12}} = \\ $$$$=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{6}} }−\frac{\mathrm{18}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{7}} }+\frac{\mathrm{135}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{8}} }−\frac{\mathrm{540}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{9}} }+\frac{\mathrm{1215}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{10}} }−\frac{\mathrm{1458}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{11}} }+\frac{\mathrm{729}}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{12}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *