Menu Close

please-help-me-How-can-resolve-this-system-1-2-x-y-1-x-2-y-2-1-




Question Number 12534 by JAZAR last updated on 24/Apr/17
please help me .How can resolve this system?  {_((1+(√2))x+y=1) ^(x^2 +y^2 =1)
$${please}\:{help}\:{me}\:.{How}\:{can}\:{resolve}\:{this}\:{system}? \\ $$$$\left\{_{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}+{y}=\mathrm{1}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}} \right. \\ $$
Answered by geovane10math last updated on 25/Apr/17
 { ((x^2  + y^2  = 1     (i))),((x + x(√2) + y = 1    (ii))) :}  (ii) :              [ x + x(√2) = 1 − y                   (x + x(√2))^2  = (1 − y)^2            x^2  + 2(√2)x^2  + 2x^2  = 1 − 2y + y^2            x^2 (1 + 2(√2) + 2) = 1 − 2y + y^2                             x^2  = ((1 − 2y + y^2 )/(2(√2) + 3))  (i) :               ((1 − 2y + y^2 )/(2(√2) + 3)) + y^2  = 1                 ((1 − 2y + y^2  +(2(√2) + 3)y^2 )/(2(√2) + 3)) = 1      1 − 2y + y^2 (1 + 2(√2) + 3) = 2(√2) + 3     (4 + 2(√2))y^2  − 2y + 1 − 2(√2) − 3 = 0           (4 + 2(√2))y^2  − 2y − 2(√2) − 2 = 0  divide by 2              (2 + (√2))y^2  − y − (√2) − 1 = 0  solving, you have two values for y: y_1 , y_2   substitute in the (i) or (ii) and you find  x_1  and x_2  too.
$$\begin{cases}{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:=\:\mathrm{1}\:\:\:\:\:\left({i}\right)}\\{{x}\:+\:{x}\sqrt{\mathrm{2}}\:+\:{y}\:=\:\mathrm{1}\:\:\:\:\left({ii}\right)}\end{cases} \\ $$$$\left({ii}\right)\::\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{x}\:+\:{x}\sqrt{\mathrm{2}}\:=\:\mathrm{1}\:−\:{y}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({x}\:+\:{x}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \:=\:\left(\mathrm{1}\:−\:{y}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\mathrm{2}\sqrt{\mathrm{2}}{x}^{\mathrm{2}} \:+\:\mathrm{2}{x}^{\mathrm{2}} \:=\:\mathrm{1}\:−\:\mathrm{2}{y}\:+\:{y}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \left(\mathrm{1}\:+\:\mathrm{2}\sqrt{\mathrm{2}}\:+\:\mathrm{2}\right)\:=\:\mathrm{1}\:−\:\mathrm{2}{y}\:+\:{y}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:=\:\frac{\mathrm{1}\:−\:\mathrm{2}{y}\:+\:{y}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{2}}\:+\:\mathrm{3}} \\ $$$$\left({i}\right)\::\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}\:−\:\mathrm{2}{y}\:+\:{y}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{2}}\:+\:\mathrm{3}}\:+\:{y}^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}\:−\:\mathrm{2}{y}\:+\:{y}^{\mathrm{2}} \:+\left(\mathrm{2}\sqrt{\mathrm{2}}\:+\:\mathrm{3}\right){y}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{2}}\:+\:\mathrm{3}}\:=\:\mathrm{1} \\ $$$$\:\:\:\:\mathrm{1}\:−\:\mathrm{2}{y}\:+\:{y}^{\mathrm{2}} \left(\mathrm{1}\:+\:\mathrm{2}\sqrt{\mathrm{2}}\:+\:\mathrm{3}\right)\:=\:\mathrm{2}\sqrt{\mathrm{2}}\:+\:\mathrm{3} \\ $$$$\:\:\:\left(\mathrm{4}\:+\:\mathrm{2}\sqrt{\mathrm{2}}\right){y}^{\mathrm{2}} \:−\:\mathrm{2}{y}\:+\:\mathrm{1}\:−\:\mathrm{2}\sqrt{\mathrm{2}}\:−\:\mathrm{3}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{4}\:+\:\mathrm{2}\sqrt{\mathrm{2}}\right){y}^{\mathrm{2}} \:−\:\mathrm{2}{y}\:−\:\mathrm{2}\sqrt{\mathrm{2}}\:−\:\mathrm{2}\:=\:\mathrm{0} \\ $$$$\mathrm{divide}\:\mathrm{by}\:\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\:+\:\sqrt{\mathrm{2}}\right){y}^{\mathrm{2}} \:−\:{y}\:−\:\sqrt{\mathrm{2}}\:−\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{solving},\:\mathrm{you}\:\mathrm{have}\:\mathrm{two}\:\mathrm{values}\:\mathrm{for}\:{y}:\:{y}_{\mathrm{1}} ,\:{y}_{\mathrm{2}} \\ $$$$\mathrm{substitute}\:\mathrm{in}\:\mathrm{the}\:\left({i}\right)\:\boldsymbol{\mathrm{or}}\:\left({ii}\right)\:\mathrm{and}\:\mathrm{you}\:\mathrm{find} \\ $$$${x}_{\mathrm{1}} \:\mathrm{and}\:{x}_{\mathrm{2}} \:\mathrm{too}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *