Menu Close

please-help-me-to-show-that-tan-2-pi-8-2tan-pi-8-1-0-




Question Number 75131 by mathocean1 last updated on 07/Dec/19
please help me to show that  tan^2 ((π/8))+2tan((π/8))−1=0
$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{tan}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)+\mathrm{2tan}\left(\frac{\pi}{\mathrm{8}}\right)−\mathrm{1}=\mathrm{0} \\ $$
Answered by mr W last updated on 07/Dec/19
tan (π/4)=1  ⇒tan 2×(π/8)=1  ⇒((2 tan (π/8))/(1−tan^2  (π/8)))=1  ⇒2 tan (π/8)=1−tan^2  (π/8)  ⇒tan^2  (π/8)+2 tan (π/8)−1=0
$$\mathrm{tan}\:\frac{\pi}{\mathrm{4}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{tan}\:\mathrm{2}×\frac{\pi}{\mathrm{8}}=\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{2}\:\mathrm{tan}\:\frac{\pi}{\mathrm{8}}}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\frac{\pi}{\mathrm{8}}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}\:\mathrm{tan}\:\frac{\pi}{\mathrm{8}}=\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\frac{\pi}{\mathrm{8}} \\ $$$$\Rightarrow\mathrm{tan}^{\mathrm{2}} \:\frac{\pi}{\mathrm{8}}+\mathrm{2}\:\mathrm{tan}\:\frac{\pi}{\mathrm{8}}−\mathrm{1}=\mathrm{0} \\ $$
Commented by mathocean1 last updated on 07/Dec/19
thank you sir...can you help me to   deduct tan(π/8)?
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}…\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\: \\ $$$$\mathrm{deduct}\:\mathrm{tan}\frac{\pi}{\mathrm{8}}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by peter frank last updated on 07/Dec/19
tan 2θ=((2tan θ)/(1−tan^2 θ))  but  θ=(π/8)  tan 2(π/8)=((2tan (π/8))/(1−tan^2 (π/8)))  tan (π/4)=((2tan (π/8))/(1−tan^2 (π/8)))
$$\mathrm{tan}\:\mathrm{2}\theta=\frac{\mathrm{2tan}\:\theta}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \theta} \\ $$$${but}\:\:\theta=\frac{\pi}{\mathrm{8}} \\ $$$$\mathrm{tan}\:\mathrm{2}\frac{\pi}{\mathrm{8}}=\frac{\mathrm{2tan}\:\frac{\pi}{\mathrm{8}}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{\pi}{\mathrm{8}}} \\ $$$$\mathrm{tan}\:\frac{\pi}{\mathrm{4}}=\frac{\mathrm{2tan}\:\frac{\pi}{\mathrm{8}}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{\pi}{\mathrm{8}}} \\ $$$$ \\ $$$$ \\ $$
Commented by MJS last updated on 07/Dec/19
right idea, just put θ=(α/2)  tan α =((2tan (α/2))/(1−tan^2  (α/2)))  now solve for tan (α/2)  tan (α/2) =−((1±(√(1+tan^2  α)))/(tan α))  now α=(π/4) ⇒ tan α =1  ⇒ tan (π/8) =−1+(√2)  knowing tan (π/8) >0 we cannot use the  second solution −1−(√2)
$$\mathrm{right}\:\mathrm{idea},\:\mathrm{just}\:\mathrm{put}\:\theta=\frac{\alpha}{\mathrm{2}} \\ $$$$\mathrm{tan}\:\alpha\:=\frac{\mathrm{2tan}\:\frac{\alpha}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}} \\ $$$$\mathrm{now}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}} \\ $$$$\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:=−\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\alpha}}{\mathrm{tan}\:\alpha} \\ $$$$\mathrm{now}\:\alpha=\frac{\pi}{\mathrm{4}}\:\Rightarrow\:\mathrm{tan}\:\alpha\:=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{tan}\:\frac{\pi}{\mathrm{8}}\:=−\mathrm{1}+\sqrt{\mathrm{2}} \\ $$$$\mathrm{knowing}\:\mathrm{tan}\:\frac{\pi}{\mathrm{8}}\:>\mathrm{0}\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{use}\:\mathrm{the} \\ $$$$\mathrm{second}\:\mathrm{solution}\:−\mathrm{1}−\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *