Menu Close

Please-help-me-to-solve-it-in-pi-0-cos2x-cosx-1-sin3x-sin2x-sinx-Explain-details-if-possible-




Question Number 77027 by mathocean1 last updated on 02/Jan/20
Please help me to solve it in [−π;0]  cos2x+cosx+1=sin3x+sin2x+sinx  Explain details if possible.
Pleasehelpmetosolveitin[π;0]cos2x+cosx+1=sin3x+sin2x+sinxExplaindetailsifpossible.
Answered by mr W last updated on 02/Jan/20
cos2x+cosx+1=sin3x+sin2x+sinx  2 cos^2  x+cosx=3 sin x−4 sin^3  x+2 sin x cos x+sinx  (2 cos x+1)cosx=2 sin x cos x (2cos x+1)  (2 cos x+1)(2 sin x−1)cosx=0  ⇒cos x=0 ⇒x=−(π/2)  ⇒cos x=−(1/2) ⇒x=−((2π)/3)  ⇒sin x=(1/2) ⇒no solution within [−π,0]  ⇒solutions are: x=−((2π)/3), −(π/2)
cos2x+cosx+1=sin3x+sin2x+sinx2cos2x+cosx=3sinx4sin3x+2sinxcosx+sinx(2cosx+1)cosx=2sinxcosx(2cosx+1)(2cosx+1)(2sinx1)cosx=0cosx=0x=π2cosx=12x=2π3sinx=12nosolutionwithin[π,0]solutionsare:x=2π3,π2
Commented by mathocean1 last updated on 02/Jan/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *