Menu Close

please-help-me-to-solve-it-in-R-3cosx-3-sinx-6-0-




Question Number 75763 by mathocean1 last updated on 16/Dec/19
please help me to solve it in R  3cosx−(√3)sinx+(√6)=0
$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\mathbb{R} \\ $$$$\mathrm{3cosx}−\sqrt{\mathrm{3}}\mathrm{sinx}+\sqrt{\mathrm{6}}=\mathrm{0} \\ $$
Answered by Ajao yinka last updated on 16/Dec/19
Answered by $@ty@m123 last updated on 17/Dec/19
Divide by 2(√3),  ((√3)/2)cos x−(1/2)sin x+(1/( (√2)))=0  sin (π/3)cos x−cos (π/3)sin x=−(1/( (√2)))  sin ((π/3)−x)=−(1/( (√2)))  sin (x−(π/3))=(1/( (√2)))  sin (x−(π/3))=sin (π/4)  x−(π/3)=nπ+(−1)^n (π/4)  , n∈Z  x=nπ+(−1)^n (π/4)+(π/3)
$${Divide}\:{by}\:\mathrm{2}\sqrt{\mathrm{3}}, \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{cos}\:{x}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:{x}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\mathrm{0} \\ $$$$\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\mathrm{cos}\:{x}−\mathrm{cos}\:\frac{\pi}{\mathrm{3}}\mathrm{sin}\:{x}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}−{x}\right)=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{3}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{3}}\right)=\mathrm{sin}\:\frac{\pi}{\mathrm{4}} \\ $$$${x}−\frac{\pi}{\mathrm{3}}={n}\pi+\left(−\mathrm{1}\right)^{{n}} \frac{\pi}{\mathrm{4}}\:\:,\:{n}\in\mathbb{Z} \\ $$$${x}={n}\pi+\left(−\mathrm{1}\right)^{{n}} \frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *