Menu Close

please-integrate-f-x-0-1-1-z-log-z-2-2zcos-x-1-z-1-2-dz-




Question Number 140194 by mnjuly1970 last updated on 05/May/21
       please  integrate::       f(x)=∫_0 ^( 1) {(1/z)log(((z^2 +2zcos(x)+1)/((z+1)^2 )))}dz
pleaseintegrate::f(x)=01{1zlog(z2+2zcos(x)+1(z+1)2)}dz
Answered by Dwaipayan Shikari last updated on 05/May/21
∫_0 ^1 ((log(z^2 +2zcosx+1))/z)−2((log(z+1))/z)dz  =∫_0 ^1 ((log(1+ze^(ix) )+log(1+ze^(−ix) ))/z)−2Σ(((−1)^(n+1) )/n^2 )  =Σ∫_0 ^1 (−1)^(n+1) (1/n)( ((z^n e^(inx) )/z)+((z^n e^(−inx) )/z))dz−(π^2 /6)  =2Σ(−1)^(n+1) ((cos(nx))/n^2 )−(π^2 /6)=2ξ−(π^2 /6)=−(x^2 /2)  ∫_0 ^x Σ(−1)^(n+1) ((sin(nx))/n^2 )dx=(π^2 /(12))−Σ_(n=1) ^∞ (((−1)^(n+1) cos(nx))/n^2 )  ⇒∫_0 ^x (x/2)dx=(π^2 /(12))−ξ⇒ξ=(π^2 /(12))−(x^2 /4)
01log(z2+2zcosx+1)z2log(z+1)zdz=01log(1+zeix)+log(1+zeix)z2Σ(1)n+1n2=Σ01(1)n+11n(zneinxz+zneinxz)dzπ26=2Σ(1)n+1cos(nx)n2π26=2ξπ26=x220xΣ(1)n+1sin(nx)n2dx=π212n=1(1)n+1cos(nx)n20xx2dx=π212ξξ=π212x24
Commented by mnjuly1970 last updated on 05/May/21
perfect and nice solution  thank you...
perfectandnicesolutionthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *