Menu Close

Please-show-me-an-approach-to-solve-this-2-x-4x-Find-the-value-of-x-




Question Number 5734 by sanusihammed last updated on 25/May/16
Please show me an approach to solve this...    2^x  = 4x    Find the value of x
Pleaseshowmeanapproachtosolvethis2x=4xFindthevalueofx
Answered by prakash jain last updated on 25/May/16
2^x =4x  1=((4x)/2^x )  1=((4x)/e^(xln 2) )=4xe^(−xln 2)   (1/4)=xe^(−xln 2)   ((−ln 2)/4)=−xln 2e^(−xln 2)   W(−((ln 2)/4))=−xln 2  x=−((W(−((ln 2)/4)))/(ln 2))  W is product logarithm function  W(xe^x )=x   So W(−xln 2e^(−xln 2) )=−xln 2
2x=4x1=4x2x1=4xexln2=4xexln214=xexln2ln24=xln2exln2W(ln24)=xln2x=W(ln24)ln2WisproductlogarithmfunctionW(xex)=xSoW(xln2exln2)=xln2
Commented by Yozzii last updated on 26/May/16
Commented by Yozzii last updated on 26/May/16
In case you wanted a bit more  information on W.
IncaseyouwantedabitmoreinformationonW.
Commented by Rasheed Soomro last updated on 26/May/16
How you derived ((−ln 2)/4)=−xln 2e^(−xln 2)   from (1/4)=xe^(−xln 2)  ?  Please insert some steps more.
Howyouderivedln24=xln2exln2from14=xexln2?Pleaseinsertsomestepsmore.
Commented by prakash jain last updated on 26/May/16
Multiplied both sides by −ln 2
Multipliedbothsidesbyln2
Commented by Rasheed Soomro last updated on 26/May/16
ThankS! I considered −xln 2e^(−xln 2)   as −xln (2e^(−xln 2) ).So couldn′t understand.
ThankS!Iconsideredxln2exln2asxln(2exln2).Socouldntunderstand.

Leave a Reply

Your email address will not be published. Required fields are marked *