Menu Close

pour-1-lt-k-lt-n-montrer-que-k-n-1-k-lt-n-1-2-2-




Question Number 68695 by fermat last updated on 15/Sep/19
pour 1<k<n     montrer que  k(n+1−k)<(n+1/2)^2
$${pour}\:\mathrm{1}<{k}<{n}\:\:\:\:\:{montrer}\:{que} \\ $$$${k}\left({n}+\mathrm{1}−{k}\right)<\left({n}+\mathrm{1}/\mathrm{2}\right)^{\mathrm{2}} \\ $$
Answered by mind is power last updated on 15/Sep/19
n+1−k<n+(1/2)  k<n+(1/2)  ⇒k(n+1−k)<(n+(1/2))^2
$${n}+\mathrm{1}−{k}<{n}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${k}<{n}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{k}\left({n}+\mathrm{1}−{k}\right)<\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *