Menu Close

Precalculus-How-do-I-find-the-volume-of-a-solid-obtained-by-rotating-the-region-bounded-by-x-y-3-2-and-x-4-about-y-1-




Question Number 134587 by bobhans last updated on 05/Mar/21
Precalculus   How do I find the volume of a solid obtained by rotating the region bounded by x=(y−3)^2 and x=4 about y=1?
PrecalculusHow do I find the volume of a solid obtained by rotating the region bounded by x=(y−3)^2 and x=4 about y=1?
Commented by EDWIN88 last updated on 05/Mar/21
Commented by EDWIN88 last updated on 05/Mar/21
Vol = 2π∫_1 ^( 5) (y−1)(4−(y−3)^2 ) dy  Vol=2π∫_1 ^( 5) (y−1)(−y^2 +6y−5)dy  Vol=2π∫_1 ^( 5) (−y^3 +7y^2 −11y+5)dy  Vol=2π [−(y^4 /4)+((7y^3 )/3)−((11y^2 )/2)+5y ]_1 ^5   Vol=2π [−(((624)/4))+((7(124))/3)−((11(24))/2)+20]  Vol=2π(−156+((868)/3)−132+20 )  Vol=2π(((868)/3)−((804)/3))=((128π)/3)
Vol=2π15(y1)(4(y3)2)dyVol=2π15(y1)(y2+6y5)dyVol=2π15(y3+7y211y+5)dyVol=2π[y44+7y3311y22+5y]15Vol=2π[(6244)+7(124)311(24)2+20]Vol=2π(156+8683132+20)Vol=2π(86838043)=128π3

Leave a Reply

Your email address will not be published. Required fields are marked *