Menu Close

Probability-Initially-there-are-4-red-balls-and-3-yellow-balls-in-a-bag-however-1-ball-is-lost-accidentally-Amy-draws-2-balls-from-the-bag-at-random-and-both-of-the-balls-drawn-are-red-What-is-the-




Question Number 134622 by bobhans last updated on 05/Mar/21
Probability  Initially there are 4 red balls and 3 yellow balls in a bag, however 1 ball is lost accidentally. Amy draws 2 balls from the bag at random and both of the balls drawn are red. What is the probability of the lost ball is the yellow one?
$$\mathrm{Probability} \\ $$Initially there are 4 red balls and 3 yellow balls in a bag, however 1 ball is lost accidentally. Amy draws 2 balls from the bag at random and both of the balls drawn are red. What is the probability of the lost ball is the yellow one?
Answered by EDWIN88 last updated on 05/Mar/21
Let Y denote the event that lost ball is a   yellow one. P(Y)=(3/7)  Let Z denote the event that lost ball is a red one  P(Z) = (4/7)  Let X denote the event that the 2 balls drawn  at random are both red  The problem statement requires calculate  P(Y∣X).  We have P(X)= P(X∣Y).P(Y)+P(X∣Z).P(Z)  (i) P(X∣Y) = C_2 ^( 4) /C_2 ^( 6) = (2/5)  (ii) P(X∣Z) = C_2 ^( 3) /C_2 ^( 6)  = (1/5)  we get P(X)= (2/5). (3/7)+ (1/5). (4/7) = ((10)/(35)) = (2/7)  note that P(Y∣X).P(X)= P(X∣Y).P(Y)  ⇔(2/7).P(Y∣X) = (2/5). (3/7)  ⇔ P(Y∣X) = (3/5)
$$\mathcal{L}\mathrm{et}\:\mathrm{Y}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{event}\:\mathrm{that}\:\mathrm{lost}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{yellow}\:\mathrm{one}.\:\mathrm{P}\left(\mathrm{Y}\right)=\frac{\mathrm{3}}{\mathrm{7}} \\ $$$$\mathrm{Let}\:\mathrm{Z}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{event}\:\mathrm{that}\:\mathrm{lost}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{a}\:\mathrm{red}\:\mathrm{one} \\ $$$$\mathrm{P}\left(\mathrm{Z}\right)\:=\:\frac{\mathrm{4}}{\mathrm{7}} \\ $$$$\mathrm{Let}\:\mathrm{X}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{event}\:\mathrm{that}\:\mathrm{the}\:\mathrm{2}\:\mathrm{balls}\:\mathrm{drawn} \\ $$$$\mathrm{at}\:\mathrm{random}\:\mathrm{are}\:\mathrm{both}\:\mathrm{red} \\ $$$$\mathrm{The}\:\mathrm{problem}\:\mathrm{statement}\:\mathrm{requires}\:\mathrm{calculate} \\ $$$$\mathrm{P}\left(\mathrm{Y}\mid\mathrm{X}\right). \\ $$$$\mathrm{We}\:\mathrm{have}\:\mathrm{P}\left(\mathrm{X}\right)=\:\mathrm{P}\left(\mathrm{X}\mid\mathrm{Y}\right).\mathrm{P}\left(\mathrm{Y}\right)+\mathrm{P}\left(\mathrm{X}\mid\mathrm{Z}\right).\mathrm{P}\left(\mathrm{Z}\right) \\ $$$$\left(\mathrm{i}\right)\:\mathrm{P}\left(\mathrm{X}\mid\mathrm{Y}\right)\:=\:\mathrm{C}_{\mathrm{2}} ^{\:\mathrm{4}} /\mathrm{C}_{\mathrm{2}} ^{\:\mathrm{6}} =\:\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{P}\left(\mathrm{X}\mid\mathrm{Z}\right)\:=\:\mathrm{C}_{\mathrm{2}} ^{\:\mathrm{3}} /\mathrm{C}_{\mathrm{2}} ^{\:\mathrm{6}} \:=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{P}\left(\mathrm{X}\right)=\:\frac{\mathrm{2}}{\mathrm{5}}.\:\frac{\mathrm{3}}{\mathrm{7}}+\:\frac{\mathrm{1}}{\mathrm{5}}.\:\frac{\mathrm{4}}{\mathrm{7}}\:=\:\frac{\mathrm{10}}{\mathrm{35}}\:=\:\frac{\mathrm{2}}{\mathrm{7}} \\ $$$$\mathrm{note}\:\mathrm{that}\:\mathrm{P}\left(\mathrm{Y}\mid\mathrm{X}\right).\mathrm{P}\left(\mathrm{X}\right)=\:\mathrm{P}\left(\mathrm{X}\mid\mathrm{Y}\right).\mathrm{P}\left(\mathrm{Y}\right) \\ $$$$\Leftrightarrow\frac{\mathrm{2}}{\mathrm{7}}.\mathrm{P}\left(\mathrm{Y}\mid\mathrm{X}\right)\:=\:\frac{\mathrm{2}}{\mathrm{5}}.\:\frac{\mathrm{3}}{\mathrm{7}} \\ $$$$\Leftrightarrow\:\mathrm{P}\left(\mathrm{Y}\mid\mathrm{X}\right)\:=\:\frac{\mathrm{3}}{\mathrm{5}}\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *