Menu Close

Proof-by-mathematical-induction-that-f-n-n-3-5n-is-a-multiple-of-6-




Question Number 137875 by physicstutes last updated on 07/Apr/21
Proof by mathematical induction that    f(n) = n^3  + 5n   is a multiple of 6.
Proofbymathematicalinductionthatf(n)=n3+5nisamultipleof6.
Answered by mathmax by abdo last updated on 08/Apr/21
f(0)=0 is mulyiple of 6  let suppose f(n) multiple of 6 ⇒  f(n)=6k ⇒n^3  +5n =6k  f(n+1)=(n+1)^3  +5(n+1) =n^3  +3n^2 +3n+1 +5n +5  =n^3  +5n  +3n^2  +3n +6 =6k +3n(n+1) +6  but n(n+1)is multiple  of 2 ⇒n(n+1)=2q ⇒f(n+1)=6k+6+6q =6(k+q+1) ⇒  f(n+1) is multiple of 6
f(0)=0ismulyipleof6letsupposef(n)multipleof6f(n)=6kn3+5n=6kf(n+1)=(n+1)3+5(n+1)=n3+3n2+3n+1+5n+5=n3+5n+3n2+3n+6=6k+3n(n+1)+6butn(n+1)ismultipleof2n(n+1)=2qf(n+1)=6k+6+6q=6(k+q+1)f(n+1)ismultipleof6

Leave a Reply

Your email address will not be published. Required fields are marked *