Menu Close

proof-e-i-cos-isin-




Question Number 5153 by 1771727373 last updated on 23/Apr/16
proof    e^(iΘ) =cos(Θ)+isin(Θ)
proofeiΘ=cos(Θ)+isin(Θ)
Answered by 123456 last updated on 23/Apr/16
lets f(θ)=cos θ+isin θ,f(0)=1  (∂f/∂θ)=−sin θ+icos θ=i(cos θ+isin θ)=if  (df/f)=idθ  ln f=iθ+k  f=e^(iθ+k) =e^(iθ) e^k =ce^(iθ)   f(0)=1⇒ce^0 =c=1  f(θ)=e^(iθ)
letsf(θ)=cosθ+isinθ,f(0)=1fθ=sinθ+icosθ=i(cosθ+isinθ)=ifdff=idθlnf=iθ+kf=eiθ+k=eiθek=ceiθf(0)=1ce0=c=1f(θ)=eiθ

Leave a Reply

Your email address will not be published. Required fields are marked *