Menu Close

proof-or-given-a-counter-example-if-f-g-are-continuos-into-a-b-and-g-never-change-sign-into-a-b-then-c-a-b-such-that-a-b-f-x-g-x-dx-f-c-a-b-g-x-dx-




Question Number 571 by 123456 last updated on 30/Jan/15
proof or given a counter example:   if f,g are continuos into [a,b] and  g never change sign into [a,b] then  ∃c∈[a,b] such that  ∫_a ^b f(x)g(x)dx=f(c)∫_a ^b g(x)dx
$${proof}\:{or}\:{given}\:{a}\:{counter}\:{example}: \\ $$$$\:{if}\:{f},{g}\:{are}\:{continuos}\:{into}\:\left[{a},{b}\right]\:{and} \\ $$$${g}\:{never}\:{change}\:{sign}\:{into}\:\left[{a},{b}\right]\:{then} \\ $$$$\exists{c}\in\left[{a},{b}\right]\:{such}\:{that} \\ $$$$\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){g}\left({x}\right){dx}={f}\left({c}\right)\underset{{a}} {\overset{{b}} {\int}}{g}\left({x}\right){dx} \\ $$
Answered by prakash jain last updated on 30/Jan/15
Since g does not change sign ∫_a ^b g(x)≠0  Hence we can write  k=((∫_a ^b f(x)g(x)dx)/(∫_a ^b g(x)dx))       ...(i)  Let say m=min f(x) x∈[a,b]  Let say M=max f(x) x∈[a,b]  case I: g(x)>0  k>M ⇒f(x)g(x)<Mg(x) then RHS in (i) less than k.  k<m ⇒f(x)g(x)>mg(x) then RHS in (i) more than k.  case II: g(x)<0  k>M ⇒f(x)g(x)>Mg(x) then RHS in (i) more than k.  k<m ⇒f(x)g(x)<mg(x) then RHS in (i) less than k.  Since LHS =k  k∈f(x) x∈[a,b]  or k=f(c) for some c∈[a,b]
$$\mathrm{Since}\:{g}\:\mathrm{does}\:\mathrm{not}\:\mathrm{change}\:\mathrm{sign}\:\int_{{a}} ^{{b}} {g}\left({x}\right)\neq\mathrm{0} \\ $$$$\mathrm{Hence}\:\mathrm{we}\:\mathrm{can}\:\mathrm{write} \\ $$$${k}=\frac{\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){g}\left({x}\right){dx}}{\int_{{a}} ^{{b}} {g}\left({x}\right){dx}}\:\:\:\:\:\:\:…\left(\mathrm{i}\right) \\ $$$$\mathrm{Let}\:\mathrm{say}\:{m}=\mathrm{min}\:{f}\left({x}\right)\:{x}\in\left[{a},{b}\right] \\ $$$$\mathrm{Let}\:\mathrm{say}\:{M}=\mathrm{max}\:{f}\left({x}\right)\:{x}\in\left[{a},{b}\right] \\ $$$$\mathrm{case}\:\mathrm{I}:\:{g}\left({x}\right)>\mathrm{0} \\ $$$${k}>{M}\:\Rightarrow{f}\left({x}\right){g}\left({x}\right)<{Mg}\left({x}\right)\:\mathrm{then}\:\mathrm{RHS}\:\mathrm{in}\:\left(\mathrm{i}\right)\:\mathrm{less}\:\mathrm{than}\:{k}. \\ $$$${k}<{m}\:\Rightarrow{f}\left({x}\right){g}\left({x}\right)>{mg}\left({x}\right)\:\mathrm{then}\:\mathrm{RHS}\:\mathrm{in}\:\left(\mathrm{i}\right)\:\mathrm{more}\:\mathrm{than}\:{k}. \\ $$$$\mathrm{case}\:\mathrm{II}:\:{g}\left({x}\right)<\mathrm{0} \\ $$$${k}>{M}\:\Rightarrow{f}\left({x}\right){g}\left({x}\right)>{Mg}\left({x}\right)\:\mathrm{then}\:\mathrm{RHS}\:\mathrm{in}\:\left(\mathrm{i}\right)\:\mathrm{more}\:\mathrm{than}\:{k}. \\ $$$${k}<{m}\:\Rightarrow{f}\left({x}\right){g}\left({x}\right)<{mg}\left({x}\right)\:\mathrm{then}\:\mathrm{RHS}\:\mathrm{in}\:\left(\mathrm{i}\right)\:\mathrm{less}\:\mathrm{than}\:{k}. \\ $$$$\mathrm{Since}\:\mathrm{LHS}\:={k} \\ $$$${k}\in{f}\left({x}\right)\:{x}\in\left[{a},{b}\right] \\ $$$$\mathrm{or}\:{k}={f}\left({c}\right)\:\mathrm{for}\:\mathrm{some}\:{c}\in\left[{a},{b}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *