Menu Close

proof-or-given-a-counter-example-if-f-g-are-continuos-into-a-b-and-g-never-change-sign-into-a-b-then-c-a-b-such-that-a-b-f-x-g-x-dx-f-c-a-b-g-x-dx-




Question Number 571 by 123456 last updated on 30/Jan/15
proof or given a counter example:   if f,g are continuos into [a,b] and  g never change sign into [a,b] then  ∃c∈[a,b] such that  ∫_a ^b f(x)g(x)dx=f(c)∫_a ^b g(x)dx
prooforgivenacounterexample:iff,garecontinuosinto[a,b]andgneverchangesigninto[a,b]thenc[a,b]suchthatbaf(x)g(x)dx=f(c)bag(x)dx
Answered by prakash jain last updated on 30/Jan/15
Since g does not change sign ∫_a ^b g(x)≠0  Hence we can write  k=((∫_a ^b f(x)g(x)dx)/(∫_a ^b g(x)dx))       ...(i)  Let say m=min f(x) x∈[a,b]  Let say M=max f(x) x∈[a,b]  case I: g(x)>0  k>M ⇒f(x)g(x)<Mg(x) then RHS in (i) less than k.  k<m ⇒f(x)g(x)>mg(x) then RHS in (i) more than k.  case II: g(x)<0  k>M ⇒f(x)g(x)>Mg(x) then RHS in (i) more than k.  k<m ⇒f(x)g(x)<mg(x) then RHS in (i) less than k.  Since LHS =k  k∈f(x) x∈[a,b]  or k=f(c) for some c∈[a,b]
Sincegdoesnotchangesignabg(x)0Hencewecanwritek=baf(x)g(x)dxabg(x)dx(i)Letsaym=minf(x)x[a,b]LetsayM=maxf(x)x[a,b]caseI:g(x)>0k>Mf(x)g(x)<Mg(x)thenRHSin(i)lessthank.k<mf(x)g(x)>mg(x)thenRHSin(i)morethank.caseII:g(x)<0k>Mf(x)g(x)>Mg(x)thenRHSin(i)morethank.k<mf(x)g(x)<mg(x)thenRHSin(i)lessthank.SinceLHS=kkf(x)x[a,b]ork=f(c)forsomec[a,b]

Leave a Reply

Your email address will not be published. Required fields are marked *