Menu Close

proof-or-given-a-counter-example-if-n-2-is-prime-then-n-Z-




Question Number 471 by 123456 last updated on 25/Jan/15
proof or given a counter example:  if n^2  is prime, then n∉Z
$${proof}\:{or}\:{given}\:{a}\:{counter}\:{example}: \\ $$$${if}\:{n}^{\mathrm{2}} \:{is}\:{prime},\:{then}\:{n}\notin\mathbb{Z} \\ $$
Answered by prakash jain last updated on 10/Jan/15
n^2  is prime so n^2 >1.   If n∈Z, n>1 or n<−1  and ∣n∣ divides n^2  which will make n^2  composite  which contraticts n^2  is prime.
$${n}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{prime}\:\mathrm{so}\:{n}^{\mathrm{2}} >\mathrm{1}.\: \\ $$$$\mathrm{If}\:{n}\in\mathbb{Z},\:{n}>\mathrm{1}\:\mathrm{or}\:\mathrm{n}<−\mathrm{1} \\ $$$$\mathrm{and}\:\mid{n}\mid\:\mathrm{divides}\:{n}^{\mathrm{2}} \:\mathrm{which}\:\mathrm{will}\:\mathrm{make}\:{n}^{\mathrm{2}} \:\mathrm{composite} \\ $$$$\mathrm{which}\:\mathrm{contraticts}\:{n}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{prime}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *