Menu Close

proof-tg-2-36-tg-2-72-5-




Question Number 143384 by mathdanisur last updated on 13/Jun/21
proof:  tg^2 (36°) ∙ tg^2 (72°) = 5
$${proof}:\:\:{tg}^{\mathrm{2}} \left(\mathrm{36}°\right)\:\centerdot\:{tg}^{\mathrm{2}} \left(\mathrm{72}°\right)\:=\:\mathrm{5} \\ $$
Answered by Dwaipayan Shikari last updated on 13/Jun/21
tan36°=((sin(36°))/(cos(36°)))=((1−cos72°)/(sin72°))=((1−(((√5)−1)/4))/( (1/4)(√(10−2(√5)))))=((5−(√5))/( (√(10−2(√5)))))  tan72°=((cos18°)/(sin18°))=((√(10−2(√5)))/( (√5)−1))  tan^2 72° tan^2 36°=(((5−(√5))/( (√5)−1)))^2 =5
$${tan}\mathrm{36}°=\frac{{sin}\left(\mathrm{36}°\right)}{{cos}\left(\mathrm{36}°\right)}=\frac{\mathrm{1}−{cos}\mathrm{72}°}{{sin}\mathrm{72}°}=\frac{\mathrm{1}−\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}}{\:\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}=\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}} \\ $$$${tan}\mathrm{72}°=\frac{{cos}\mathrm{18}°}{{sin}\mathrm{18}°}=\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\:\sqrt{\mathrm{5}}−\mathrm{1}} \\ $$$${tan}^{\mathrm{2}} \mathrm{72}°\:{tan}^{\mathrm{2}} \mathrm{36}°=\left(\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{5}}−\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{5} \\ $$
Commented by mathdanisur last updated on 14/Jun/21
Sir thank you
$${Sir}\:{thank}\:{you} \\ $$
Answered by Ar Brandon last updated on 13/Jun/21
α=tan^2 ((π/5))tan^2 (((2π)/5))=tan^2 ((π/5))cot^2 ((π/(10)))      =(((√(10−2(√5)))/( (√5)+1)))^2 (((√(10+2(√5)))/( (√5)−1)))^2 =((80)/(16))=5
$$\alpha=\mathrm{tan}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{5}}\right)\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)=\mathrm{tan}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{5}}\right)\mathrm{cot}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{10}}\right) \\ $$$$\:\:\:\:=\left(\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}\right)^{\mathrm{2}} \left(\frac{\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}{\:\sqrt{\mathrm{5}}−\mathrm{1}}\right)^{\mathrm{2}} =\frac{\mathrm{80}}{\mathrm{16}}=\mathrm{5} \\ $$
Commented by mathdanisur last updated on 14/Jun/21
thank you Sir
$${thank}\:{you}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *