Menu Close

proof-that-n-gt-n-3-n-n-N-




Question Number 658 by 123456 last updated on 22/Feb/15
proof that n!>((n/3))^n ,n∈N^∗
proofthatn!>(n3)n,nN
Commented by 123456 last updated on 20/Feb/15
n=1⇒1!=1>(1/3)=((1/3))^1   n=1⇒0!=1>(1/3)≈0.33  n=2⇒2!=2>(4/9)=((2/3))^2   n=2⇒1!=1>(4/9)≈0.44  n=3⇒3!=6>1=((3/3))^3   n=3⇒2!=2>1  n=4⇒4!=24>((256)/(81))=((4/3))^4   n=4⇒3!=6>((256)/(81))≈3.16  n=5⇒5!=120>((3125)/(243))=((5/3))^5   n=5⇒4!=24>((3125)/(243))≈13.23  n=6⇒6!=720>64=((6/3))^6   n=6⇒5!=120>64  n=7⇒7!=5040>((823543)/(2187))=((7/3))^7   n=7⇒6!=720>((823543)/(2187))≈376.52
n=11!=1>13=(13)1n=10!=1>130.33n=22!=2>49=(23)2n=21!=1>490.44n=33!=6>1=(33)3n=32!=2>1n=44!=24>25681=(43)4n=43!=6>256813.16n=55!=120>3125243=(53)5n=54!=24>312524313.23n=66!=720>64=(63)6n=65!=120>64n=77!=5040>8235432187=(73)7n=76!=720>8235432187376.52
Commented by 123456 last updated on 20/Feb/15
k!>(k^k /3^k )⇒(k+1)!>((k^k (k+1))/3^k )  k!>(k^k /3^k )⇒((k!(k+1)^(k+1) )/(3k^k ))>(((k+1)^(k+1) )/3^(k+1) )
k!>kk3k(k+1)!>kk(k+1)3kk!>kk3kk!(k+1)k+13kk>(k+1)k+13k+1

Leave a Reply

Your email address will not be published. Required fields are marked *