Menu Close

Proof-with-induction-for-every-n-N-i-1-n-2-i-2-2-n-3-8-




Question Number 11131 by Joel576 last updated on 13/Mar/17
Proof with induction, for every n ∈ N  Σ_(i = 1) ^n  2^(i + 2)  = 2^(n + 3)  − 8
$$\mathrm{Proof}\:\mathrm{with}\:\mathrm{induction},\:\mathrm{for}\:\mathrm{every}\:{n}\:\in\:\mathbb{N} \\ $$$$\underset{{i}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\:\mathrm{2}^{{i}\:+\:\mathrm{2}} \:=\:\mathrm{2}^{{n}\:+\:\mathrm{3}} \:−\:\mathrm{8} \\ $$
Commented by Joel576 last updated on 13/Mar/17
I have answered it, but it seems I have done something wrong    • For n = 1  ⇒ 2^(3 )  = 2^4  − 8  ⇒ 8   = 8 (proved)    • If it proved for n, so it also proved for n + 1  S_n  = 2^(n + 3)  − 8  S_(n + 1)  = 2^(n + 4)  − 8    2^(1 + 2)  + 2^(2 + 2)  + ... + n = 2^(n + 3)  − 8  (2^(1 + 2)  + 2^(2 + 2)  + ... + n) + (n + 1) = 2^(n + 3)  − 8 + (n + 1)  2^(n + 4)  − 8 = 2^(n + 3)  − 8 + n + 1
$$\mathrm{I}\:\mathrm{have}\:\mathrm{answered}\:\mathrm{it},\:\mathrm{but}\:\mathrm{it}\:\mathrm{seems}\:\mathrm{I}\:\mathrm{have}\:\mathrm{done}\:\mathrm{something}\:\mathrm{wrong} \\ $$$$ \\ $$$$\bullet\:\mathrm{For}\:{n}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{2}^{\mathrm{3}\:} \:=\:\mathrm{2}^{\mathrm{4}} \:−\:\mathrm{8} \\ $$$$\Rightarrow\:\mathrm{8}\:\:\:=\:\mathrm{8}\:\left(\mathrm{proved}\right) \\ $$$$ \\ $$$$\bullet\:\mathrm{If}\:\mathrm{it}\:\mathrm{proved}\:\mathrm{for}\:{n},\:\mathrm{so}\:\mathrm{it}\:\mathrm{also}\:\mathrm{proved}\:\mathrm{for}\:{n}\:+\:\mathrm{1} \\ $$$${S}_{{n}} \:=\:\mathrm{2}^{{n}\:+\:\mathrm{3}} \:−\:\mathrm{8} \\ $$$${S}_{{n}\:+\:\mathrm{1}} \:=\:\mathrm{2}^{{n}\:+\:\mathrm{4}} \:−\:\mathrm{8} \\ $$$$ \\ $$$$\mathrm{2}^{\mathrm{1}\:+\:\mathrm{2}} \:+\:\mathrm{2}^{\mathrm{2}\:+\:\mathrm{2}} \:+\:…\:+\:{n}\:=\:\mathrm{2}^{{n}\:+\:\mathrm{3}} \:−\:\mathrm{8} \\ $$$$\left(\mathrm{2}^{\mathrm{1}\:+\:\mathrm{2}} \:+\:\mathrm{2}^{\mathrm{2}\:+\:\mathrm{2}} \:+\:…\:+\:{n}\right)\:+\:\left({n}\:+\:\mathrm{1}\right)\:=\:\mathrm{2}^{{n}\:+\:\mathrm{3}} \:−\:\mathrm{8}\:+\:\left({n}\:+\:\mathrm{1}\right) \\ $$$$\mathrm{2}^{{n}\:+\:\mathrm{4}} \:−\:\mathrm{8}\:=\:\mathrm{2}^{{n}\:+\:\mathrm{3}} \:−\:\mathrm{8}\:+\:{n}\:+\:\mathrm{1} \\ $$
Commented by mrW1 last updated on 13/Mar/17
it should be:  S_n =2^(1 + 2)  + 2^(2 + 2)  + ... + 2^(n+2)  = 2^(n + 3)  − 8  S_(n+1) =(2^(1 + 2)  + 2^(2 + 2)  + ... + 2^(n+2) ) + (2^(n+1+2) )   =2^(n + 3)  − 8+2^(n+1+2)   =2×2^(n+3) −8  =2^((n+1)+3) −8
$${it}\:{should}\:{be}: \\ $$$${S}_{{n}} =\mathrm{2}^{\mathrm{1}\:+\:\mathrm{2}} \:+\:\mathrm{2}^{\mathrm{2}\:+\:\mathrm{2}} \:+\:…\:+\:\mathrm{2}^{{n}+\mathrm{2}} \:=\:\mathrm{2}^{{n}\:+\:\mathrm{3}} \:−\:\mathrm{8} \\ $$$${S}_{{n}+\mathrm{1}} =\left(\mathrm{2}^{\mathrm{1}\:+\:\mathrm{2}} \:+\:\mathrm{2}^{\mathrm{2}\:+\:\mathrm{2}} \:+\:…\:+\:\mathrm{2}^{{n}+\mathrm{2}} \right)\:+\:\left(\mathrm{2}^{{n}+\mathrm{1}+\mathrm{2}} \right)\: \\ $$$$=\mathrm{2}^{{n}\:+\:\mathrm{3}} \:−\:\mathrm{8}+\mathrm{2}^{{n}+\mathrm{1}+\mathrm{2}} \\ $$$$=\mathrm{2}×\mathrm{2}^{{n}+\mathrm{3}} −\mathrm{8} \\ $$$$=\mathrm{2}^{\left({n}+\mathrm{1}\right)+\mathrm{3}} −\mathrm{8} \\ $$
Commented by Joel576 last updated on 13/Mar/17
oh, ok thank you very much
$${oh},\:{ok}\:{thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *