Menu Close

prove-0-1-ln-2-x-1-x-4-dx-pi-3-32-7-8-3-




Question Number 141319 by mnjuly1970 last updated on 18/May/21
          prove::         Ω:=∫_0 ^( 1) ((ln^2 (x))/(1−x^4 ))dx =(π^3 /(32))+(7/8)ζ(3)..
prove::Ω:=01ln2(x)1x4dx=π332+78ζ(3)..
Answered by qaz last updated on 17/May/21
∫_0 ^∞ ((ln^2 (x))/(1−x^4 ))dx  =∫_0 ^1 ((ln^2 (x))/(1−x^4 ))dx+∫_1 ^∞ ((ln^2 (x))/(1−x^4 ))dx  =∫_0 ^1 ((ln^2 x)/(1−x^4 ))dx+∫_0 ^1 ((x^2 ln^2 x)/(x^4 −1))dx  =∫_0 ^1 ((ln^2 x)/(1+x^2 ))dx  =∫_0 ^∞ ((y^2 e^(−y) )/(1+e^(−2y) ))dy  =Σ_(n=0) ^∞ (−1)^n ∫_0 ^∞ y^2 e^(−(2n+1)y) dy  =2Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^3 ))  =(π^3 /(16))
0ln2(x)1x4dx=01ln2(x)1x4dx+1ln2(x)1x4dx=01ln2x1x4dx+01x2ln2xx41dx=01ln2x1+x2dx=0y2ey1+e2ydy=n=0(1)n0y2e(2n+1)ydy=2n=0(1)n(2n+1)3=π316
Answered by Dwaipayan Shikari last updated on 17/May/21
∫_0 ^∞ ((log^2 (x))/(1−x^4 ))dx  =∫_1 ^∞ ((log^2 (x))/(1−x^4 ))dx+∫_0 ^1 ((log^2 (x))/(1−x^4 ))dx   (1/x)=i  =∫_0 ^1 ((log^2 (u)u^2 )/(u^4 −1))+∫_0 ^1 ((log^2 (x))/(1−x^4 ))dx    x^4 =m   u^4 =k  =−(1/(64))∫_0 ^1 ((log^2 (k)k^(−1/4) )/(1−k))+(1/(64))∫_0 ^1 ((log^2 (m)m^(−3/4) )/(1−m))dm  =(1/(64))(ψ′′((3/4))−ψ′′((1/4)))=(π^3 /(16))  ψ(1−a)−ψ(a)=πcot(πa)  ψ′(1−a)+ψ′(a)=π^2 csc^2 (πa)  ψ′′(1−a)−ψ′′(a)=2π^3 csc^2 (πa)cot(πa)  ψ′′((3/4))−ψ′′((1/4))=4π^3
0log2(x)1x4dx=1log2(x)1x4dx+01log2(x)1x4dx1x=i=01log2(u)u2u41+01log2(x)1x4dxx4=mu4=k=16401log2(k)k1/41k+16401log2(m)m3/41mdm=164(ψ(34)ψ(14))=π316ψ(1a)ψ(a)=πcot(πa)ψ(1a)+ψ(a)=π2csc2(πa)ψ(1a)ψ(a)=2π3csc2(πa)cot(πa)ψ(34)ψ(14)=4π3

Leave a Reply

Your email address will not be published. Required fields are marked *