prove-0-1-ln-2-x-1-x-4-dx-pi-3-32-7-8-3- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 141319 by mnjuly1970 last updated on 18/May/21 prove::Ω:=∫01ln2(x)1−x4dx=π332+78ζ(3).. Answered by qaz last updated on 17/May/21 ∫0∞ln2(x)1−x4dx=∫01ln2(x)1−x4dx+∫1∞ln2(x)1−x4dx=∫01ln2x1−x4dx+∫01x2ln2xx4−1dx=∫01ln2x1+x2dx=∫0∞y2e−y1+e−2ydy=∑∞n=0(−1)n∫0∞y2e−(2n+1)ydy=2∑∞n=0(−1)n(2n+1)3=π316 Answered by Dwaipayan Shikari last updated on 17/May/21 ∫0∞log2(x)1−x4dx=∫1∞log2(x)1−x4dx+∫01log2(x)1−x4dx1x=i=∫01log2(u)u2u4−1+∫01log2(x)1−x4dxx4=mu4=k=−164∫01log2(k)k−1/41−k+164∫01log2(m)m−3/41−mdm=164(ψ″(34)−ψ″(14))=π316ψ(1−a)−ψ(a)=πcot(πa)ψ′(1−a)+ψ′(a)=π2csc2(πa)ψ″(1−a)−ψ″(a)=2π3csc2(πa)cot(πa)ψ″(34)−ψ″(14)=4π3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-141313Next Next post: Question-75783 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.