Menu Close

Prove-0-x-a-1-e-x-dx-1-2-a-a-1-a-1-




Question Number 134291 by Lordose last updated on 02/Mar/21
   Prove   ∫_0 ^( ∞) (x^a /(1+e^x ))dx = (1−2^(−a) )𝛇(a+1)𝚪(a+1)
Prove0xa1+exdx=(12a)ζ(a+1)Γ(a+1)
Answered by Dwaipayan Shikari last updated on 02/Mar/21
I(a)=∫_0 ^∞ (x^a /(1+e^x ))dx=Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^∞ e^(−nx) x^a dx  =Σ_(n=1) ^∞ (−1)^(n+1) (1/n^(a+1) )Γ(a+1)  =Γ(a+1)ζ(a+1)(1−(1/2^(a+1−1) ))=a!ζ(a+1)(1−2^(−a) )
I(a)=0xa1+exdx=n=1(1)n+10enxxadx=n=1(1)n+11na+1Γ(a+1)=Γ(a+1)ζ(a+1)(112a+11)=a!ζ(a+1)(12a)

Leave a Reply

Your email address will not be published. Required fields are marked *