Prove-1-1-1-x-2-dx-pi-2- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 77474 by 21042004 last updated on 06/Jan/20 Prove∫−111−x2dx=π2 Commented by mathmax by abdo last updated on 06/Jan/20 letI=∫−111−x2dx⇒I=2∫011−x2dxchangementx=sinθgiveI=2∫0π2cosθcosθdθ=∫0π2(1+cos(2θ)dθ=π2+[12sin(2θ)]0π2=π2+0=π2. Answered by MJS last updated on 06/Jan/20 (1)y=1−x2istheupperhalfofthecirclewithcenter(00)andradiusr=1⇒theintegralishalfofthecirclearea=12r2π=π2(2)∫1−x2dx=[t=arcsinx→dx=1−x2dt]=∫cos2tdt=12(t+sintcost)==12(x1−x2+arcsinx)+C⇒theintegralisπ2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Solve-x-p-3-p-2-y-p-Next Next post: lim-x-x-1-1-3-x-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.