Menu Close

Prove-1-1-1-x-2-dx-pi-2-




Question Number 77474 by 21042004 last updated on 06/Jan/20
Prove  ∫_(−1) ^1 (√(1−x^2 )) dx=(π/2)
Prove111x2dx=π2
Commented by mathmax by abdo last updated on 06/Jan/20
let I =∫_(−1) ^1 (√(1−x^2 ))dx ⇒ I =2∫_0 ^1 (√(1−x^2 ))dx changement x=sinθ  give I =2∫_0 ^(π/2) cosθ cosθ dθ =∫_0 ^(π/2) (1+cos(2θ)dθ  =(π/2) +[(1/2)sin(2θ)]_0 ^(π/2) =(π/2)+0 =(π/2).
letI=111x2dxI=2011x2dxchangementx=sinθgiveI=20π2cosθcosθdθ=0π2(1+cos(2θ)dθ=π2+[12sin(2θ)]0π2=π2+0=π2.
Answered by MJS last updated on 06/Jan/20
(1) y=(√(1−x^2 )) is the upper half of the circle  with center  ((0),(0) ) and radius r=1 ⇒ the integral  is half of the circle area =(1/2)r^2 π=(π/2)  (2) ∫(√(1−x^2 ))dx=               [t=arcsin x → dx=(√(1−x^2 ))dt]          =∫cos^2  t dt=(1/2)(t+sin t cos t)=          =(1/2)(x(√(1−x^2 ))+arcsin x) +C          ⇒ the integral is (π/2)
(1)y=1x2istheupperhalfofthecirclewithcenter(00)andradiusr=1theintegralishalfofthecirclearea=12r2π=π2(2)1x2dx=[t=arcsinxdx=1x2dt]=cos2tdt=12(t+sintcost)==12(x1x2+arcsinx)+Ctheintegralisπ2

Leave a Reply

Your email address will not be published. Required fields are marked *