Menu Close

prove-1-2-3-4-5-6-2n-1-2n-1-3n-1-




Question Number 9004 by mrW last updated on 12/Nov/16
prove  (1/2)∙(3/4)∙(5/6)∙∙∙∙∙((2n−1)/(2n))≤(1/( (√(3n+1))))
prove1234562n12n13n+1
Answered by mrW last updated on 15/Nov/16
Using mathematical induction  prove P(n)=Π_(k=1) ^n ((2k−1)/(2k))≤(1/( (√(3n+1))))  for n=1  P(1)=(1/2)≤^! (1/( (√(3∙1+1))))=(1/( (√4)))=(1/2)  it′s true.  suppose it′s true for n, i.e.  P(n)=Π_(k=1) ^n ((2k−1)/(2k))≤(1/( (√(3n+1))))  P(n+1)=((2(n+1)−1)/(2(n+1)))P(n)  =((2n+1)/(2n+2))P(n)≤((2n+1)/(2n+2))∙(1/( (√(3n+1))))  =((2n+1)/(2n+2))∙((√(3n+4))/( (√(3n+1))))∙(1/( (√(3(n+1)+1))))  =((√((2n+1)^2 ∙(3n+4)))/( (√((2n+2)^2 ∙(3n+1)))))∙(1/( (√(3(n+1)+1))))  =((√((4n^2 +4n+1)∙(3n+4)))/( (√((4n^2 +8n+4)∙(3n+1)))))∙(1/( (√(3(n+1)+1))))  =((√(12n^3 +28n^2 +19n+4))/( (√(12n^3 +28n^2 +20n+4))))∙(1/( (√(3(n+1)+1))))  ≤(1/( (√(3(n+1)+1))))  so it′s true for all n≥1
UsingmathematicalinductionproveP(n)=nk=12k12k13n+1forn=1P(1)=12!131+1=14=12itstrue.supposeitstrueforn,i.e.P(n)=nk=12k12k13n+1P(n+1)=2(n+1)12(n+1)P(n)=2n+12n+2P(n)2n+12n+213n+1=2n+12n+23n+43n+113(n+1)+1=(2n+1)2(3n+4)(2n+2)2(3n+1)13(n+1)+1=(4n2+4n+1)(3n+4)(4n2+8n+4)(3n+1)13(n+1)+1=12n3+28n2+19n+412n3+28n2+20n+413(n+1)+113(n+1)+1soitstrueforalln1

Leave a Reply

Your email address will not be published. Required fields are marked *