Question Number 139708 by qaz last updated on 30/Apr/21

Answered by Dwaipayan Shikari last updated on 30/Apr/21

Commented by qaz last updated on 30/Apr/21

Answered by mindispower last updated on 30/Apr/21
![:: =∫_0 ^π (x^2 /(1+8(1−cos^2 (x))))dx =∫_0 ^π (x^2 /((3−2(√2)cos(x))(3+2(√2)cos(x)))) =(1/6)(∫_0 ^π (x^2 /(3−2(√2)cos(x)))dx+∫_0 ^π (x^2 /(3+2(√2)cos(x)))dx) =(1/6)(A+B) 6A=∫_0 ^π ((1−((1/( (√2))))^2 )/(1+(1/(((√2))^2 ))−2.(1/( (√2)))cos(x)))x^2 dx 6B=∫_0 ^π ((1−(−(1/( (√2))))^2 )/(1+(−(1/( (√2))))^2 +2.−(1/( (√2)))cos(x)))x^2 dx A=(1/6)∫_0 ^π (x^2 +2Σ_(n≥1) ((1/( (√2))))^n x^2 cos(nx)) B=(1/6)∫_0 ^π (x^2 +2Σ_(n≥1) (−(√2))^n x^2 cos(nx)) ∫_0 ^π x^2 cos(nx)dx=−(2/n)∫_0 ^π xsin(nx)dx =(2/n^2 )[π(−1)^n ] A=(π^3 /(18))+(1/3)Σ_(n≥1) ((1/( (√2))))^n .((2π)/n^2 )((−1)^n ) B=(π^3 /(18))+(1/3)Σ_(n≥1) (−(1/( (√2))))^n .(2/n^2 )((−1)^n ) A+B=(π^3 /9)+(1/3)Σ_(n≥1) ((1/2))^n .(π/n^2 ) li_2 (z)=Σ_(n≥1) (z^n /n^2 );∀∣z∣≤1 =(π^3 /9)+(π/3)Li_2 ((1/2)),li_2 ((1/2))=(π^2 /(12))−((ln^2 (2))/2) =(π^3 /9)+(π/3)((π^2 /(12))−((ln^2 (2))/2))=((5π^3 )/(36))−((πln^2 (2))/6)](https://www.tinkutara.com/question/Q139722.png)
Commented by mnjuly1970 last updated on 30/Apr/21

Commented by mindispower last updated on 01/May/21

Answered by mathmax by abdo last updated on 01/May/21
