Menu Close

Prove-1-2-n-1-a-n-cos-nx-1-a-2-1-2acos-x-a-2-a-lt-1-And-calculate-0-pi-x-2-1-8sin-2-x-dx-5pi-3-36-pi-6-ln-2-2-




Question Number 139708 by qaz last updated on 30/Apr/21
Prove:   1+2Σ_(n=1) ^∞ a^n cos (nx)=((1−a^2 )/(1−2acos x+a^2 )),      (∣a∣<1)  And calculate::  ∫_0 ^π (x^2 /(1+8sin^2 x))dx=((5π^3 )/(36))−(π/6)ln^2 2
Prove:1+2n=1ancos(nx)=1a212acosx+a2,(a∣<1)Andcalculate::0πx21+8sin2xdx=5π336π6ln22
Answered by Dwaipayan Shikari last updated on 30/Apr/21
1+Σ_(n=1) ^∞ a^n e^(inx) +a^n e^(−inx) =1+Σ_(n=1) ^∞ (ae^(ix) )^n +(ae^(−ix) )^n   =1+((ae^(ix) )/(1−ae^(ix) ))+((ae^(−ix) )/(1−ae^(−i) )) =1+((ae^(ix) −a^2 +ae^(−ix) −a^2 )/(1−2acos(x)+a^2 ))  =1+((2acos(x)−2a^2 )/(1−2acosx+a^2 ))=((1−a^2 )/(1−2acos(x)+a^2 ))
1+n=1aneinx+aneinx=1+n=1(aeix)n+(aeix)n=1+aeix1aeix+aeix1aei=1+aeixa2+aeixa212acos(x)+a2=1+2acos(x)2a212acosx+a2=1a212acos(x)+a2
Commented by qaz last updated on 30/Apr/21
thank you.sir
thankyou.sir
Answered by mindispower last updated on 30/Apr/21
::  =∫_0 ^π (x^2 /(1+8(1−cos^2 (x))))dx  =∫_0 ^π (x^2 /((3−2(√2)cos(x))(3+2(√2)cos(x))))  =(1/6)(∫_0 ^π (x^2 /(3−2(√2)cos(x)))dx+∫_0 ^π (x^2 /(3+2(√2)cos(x)))dx)  =(1/6)(A+B)  6A=∫_0 ^π ((1−((1/( (√2))))^2 )/(1+(1/(((√2))^2 ))−2.(1/( (√2)))cos(x)))x^2 dx  6B=∫_0 ^π ((1−(−(1/( (√2))))^2 )/(1+(−(1/( (√2))))^2 +2.−(1/( (√2)))cos(x)))x^2 dx  A=(1/6)∫_0 ^π (x^2 +2Σ_(n≥1) ((1/( (√2))))^n x^2 cos(nx))  B=(1/6)∫_0 ^π (x^2 +2Σ_(n≥1) (−(√2))^n x^2 cos(nx))  ∫_0 ^π x^2 cos(nx)dx=−(2/n)∫_0 ^π xsin(nx)dx  =(2/n^2 )[π(−1)^n ]  A=(π^3 /(18))+(1/3)Σ_(n≥1) ((1/( (√2))))^n .((2π)/n^2 )((−1)^n )  B=(π^3 /(18))+(1/3)Σ_(n≥1) (−(1/( (√2))))^n .(2/n^2 )((−1)^n )  A+B=(π^3 /9)+(1/3)Σ_(n≥1) ((1/2))^n .(π/n^2 )  li_2 (z)=Σ_(n≥1) (z^n /n^2 );∀∣z∣≤1  =(π^3 /9)+(π/3)Li_2 ((1/2)),li_2 ((1/2))=(π^2 /(12))−((ln^2 (2))/2)  =(π^3 /9)+(π/3)((π^2 /(12))−((ln^2 (2))/2))=((5π^3 )/(36))−((πln^2 (2))/6)
::=0πx21+8(1cos2(x))dx=0πx2(322cos(x))(3+22cos(x))=16(0πx2322cos(x)dx+0πx23+22cos(x)dx)=16(A+B)6A=0π1(12)21+1(2)22.12cos(x)x2dx6B=0π1(12)21+(12)2+2.12cos(x)x2dxA=160π(x2+2n1(12)nx2cos(nx))B=160π(x2+2n1(2)nx2cos(nx))0πx2cos(nx)dx=2n0πxsin(nx)dx=2n2[π(1)n]A=π318+13n1(12)n.2πn2((1)n)B=π318+13n1(12)n.2n2((1)n)A+B=π39+13n1(12)n.πn2li2(z)=n1znn2;z∣⩽1=π39+π3Li2(12),li2(12)=π212ln2(2)2=π39+π3(π212ln2(2)2)=5π336πln2(2)6
Commented by mnjuly1970 last updated on 30/Apr/21
bravo bravo sir power...
bravobravosirpower
Commented by mindispower last updated on 01/May/21
withe pleasur Sir
withepleasurSir
Answered by mathmax by abdo last updated on 01/May/21
Σ_(n=1) ^∞  a^n  cos(nx) =Re(Σ_(n=0) ^∞   a^n  e^(inx)  −1)  Σ_(n=0) ^∞  (ae^(ix) )^n  =(1/(1−ae^(ix) )) =(1/(1−acosx−iasinx)) =((1−acosx+iasinx)/((1−acosx)^2  +a^2  sin^2 x))   ⇒Σ_(n=1) ^∞  a^n  cos(nx) =((1−acosx)/(1−2acosx+a^2 ))−1 ⇒  1+2Σ_(n=1) ^∞  a^n cos(nx) =1+((2−2acosx)/(1−2acosx+a^2 ))−2  =((2−2acosx)/(1−2acosx+a^2 ))−1 =((2−2acosx−1+2acosx−a^2 )/(a^2 −2acosx +1)) =((1−a^2 )/(a^2 −2acosx +1))
n=1ancos(nx)=Re(n=0aneinx1)n=0(aeix)n=11aeix=11acosxiasinx=1acosx+iasinx(1acosx)2+a2sin2xn=1ancos(nx)=1acosx12acosx+a211+2n=1ancos(nx)=1+22acosx12acosx+a22=22acosx12acosx+a21=22acosx1+2acosxa2a22acosx+1=1a2a22acosx+1

Leave a Reply

Your email address will not be published. Required fields are marked *