Menu Close

prove-any-prime-number-gt-2-can-be-written-into-x-2-y-2-where-x-y-N-




Question Number 8027 by Nayon last updated on 28/Sep/16
prove→ any prime number>2   can be written into( x^2 −y^(2 ) ) where  (x,y)∈N
proveanyprimenumber>2canbewritteninto(x2y2)where(x,y)N
Commented by FilupSmith last updated on 28/Sep/16
Attempt to solve... currently playing  around with math...  (x,y)∈N  P∈P/{2}         {P=3,5,7,11,13,...}     x^2 −y^2 =P     P>0⇒x>y    x=Π_(i=1) ^(ω(x)) p_i ^a_i             y=Π_(i=1) ^(ω(y)) q_i ^b_i    x=p_1 ^a_1  p_2 ^a_2  p_3 ^a_3  ...p_n ^a_n        (e.g.  150=15×10=5×3×5×2                                              =2^1 ∙3^1 ∙5^2   ω(x)=n       (number of discrete prime factors)    ∴if   x^2 −y^2 =P ⇒^(?)  ∃p_k ∈(x∨y):p_k =P
Attempttosolvecurrentlyplayingaroundwithmath(x,y)NPP/{2}{P=3,5,7,11,13,}x2y2=PP>0x>yx=ω(x)i=1piaiy=ω(y)i=1qibix=p1a1p2a2p3a3pnan(e.g.150=15×10=5×3×5×2=213152ω(x)=n(numberofdiscreteprimefactors)ifx2y2=P?pk(xy):pk=P
Answered by prakash jain last updated on 28/Sep/16
x^2 −y^2 =(x−y)(x+y)  If p=x^2 −y^2   p can have only 2 factors (1, p)  x−y=1  x+y=p  x=((p+1)/2)  y=((p−1)/2)  All prime >2 are odd can be  written as 2k+1  p=2k+1⇒x=k+1,y=k  ⇒x,y∈N  p=2k+1=(k+1)^2 −k^2
x2y2=(xy)(x+y)Ifp=x2y2pcanhaveonly2factors(1,p)xy=1x+y=px=p+12y=p12Allprime>2areoddcanbewrittenas2k+1p=2k+1x=k+1,y=kx,yNp=2k+1=(k+1)2k2
Commented by FilupSmith last updated on 29/Sep/16
i forgot x^2 −y^2 =(x−y)(x+y)   haha
iforgotx2y2=(xy)(x+y)haha

Leave a Reply

Your email address will not be published. Required fields are marked *