Menu Close

Prove-by-induction-on-n-for-n-2-u-n-2-3-n-1-for-the-sequence-u-n-defined-by-the-recurrence-relation-u-1-1-




Question Number 591 by 112358 last updated on 04/Feb/15
Prove by induction on n, for n≥2,                                 u_n  ≥ 2^3^(n−1)    for the sequence {u_n } defined by   the recurrence relation                               u_1 =1                        u_(n+1) =(u_n +(1/u_n ))^3   , n≥1 .
$${Prove}\:{by}\:{induction}\:{on}\:{n},\:{for}\:{n}\geqslant\mathrm{2}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{u}_{{n}} \:\geqslant\:\mathrm{2}^{\mathrm{3}^{{n}−\mathrm{1}} } \\ $$$${for}\:{the}\:{sequence}\:\left\{{u}_{{n}} \right\}\:{defined}\:{by}\: \\ $$$${the}\:{recurrence}\:{relation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{u}_{\mathrm{1}} =\mathrm{1}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{u}_{{n}+\mathrm{1}} =\left({u}_{{n}} +\frac{\mathrm{1}}{{u}_{{n}} }\right)^{\mathrm{3}} \:\:,\:{n}\geqslant\mathrm{1}\:. \\ $$
Answered by prakash jain last updated on 04/Feb/15
u_(n+1) =(u_n +(1/u_n ))^3 ≥u_n ^3   If u_n ≥2^3^(n−1)    u_(n+1) ≥(2^3^(n−1)  )^3 =2^3^(n−1)  ×2^3^(n−1)  ×2^3^(n−1)  =2^3^n    or  u_n ≥2^3^(n−1)   ⇒ u_(n+1) ≥2^3^n    u_2 =2^3 ≥2^3^(2−1)   ⇒ u_3 ≥2^3^2
$${u}_{{n}+\mathrm{1}} =\left({u}_{{n}} +\frac{\mathrm{1}}{{u}_{{n}} }\right)^{\mathrm{3}} \geqslant{u}_{{n}} ^{\mathrm{3}} \\ $$$$\mathrm{If}\:{u}_{{n}} \geqslant\mathrm{2}^{\mathrm{3}^{{n}−\mathrm{1}} } \\ $$$${u}_{{n}+\mathrm{1}} \geqslant\left(\mathrm{2}^{\mathrm{3}^{{n}−\mathrm{1}} } \right)^{\mathrm{3}} =\mathrm{2}^{\mathrm{3}^{{n}−\mathrm{1}} } ×\mathrm{2}^{\mathrm{3}^{{n}−\mathrm{1}} } ×\mathrm{2}^{\mathrm{3}^{{n}−\mathrm{1}} } =\mathrm{2}^{\mathrm{3}^{{n}} } \\ $$$$\mathrm{or} \\ $$$${u}_{{n}} \geqslant\mathrm{2}^{\mathrm{3}^{\mathrm{n}−\mathrm{1}} } \:\Rightarrow\:{u}_{{n}+\mathrm{1}} \geqslant\mathrm{2}^{\mathrm{3}^{{n}} } \\ $$$${u}_{\mathrm{2}} =\mathrm{2}^{\mathrm{3}} \geqslant\mathrm{2}^{\mathrm{3}^{\mathrm{2}−\mathrm{1}} } \:\Rightarrow\:{u}_{\mathrm{3}} \geqslant\mathrm{2}^{\mathrm{3}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *