Menu Close

Prove-by-induction-on-n-for-n-2-u-n-2-3-n-1-for-the-sequence-u-n-defined-by-the-recurrence-relation-u-1-1-




Question Number 591 by 112358 last updated on 04/Feb/15
Prove by induction on n, for n≥2,                                 u_n  ≥ 2^3^(n−1)    for the sequence {u_n } defined by   the recurrence relation                               u_1 =1                        u_(n+1) =(u_n +(1/u_n ))^3   , n≥1 .
Provebyinductiononn,forn2,un23n1forthesequence{un}definedbytherecurrencerelationu1=1un+1=(un+1un)3,n1.
Answered by prakash jain last updated on 04/Feb/15
u_(n+1) =(u_n +(1/u_n ))^3 ≥u_n ^3   If u_n ≥2^3^(n−1)    u_(n+1) ≥(2^3^(n−1)  )^3 =2^3^(n−1)  ×2^3^(n−1)  ×2^3^(n−1)  =2^3^n    or  u_n ≥2^3^(n−1)   ⇒ u_(n+1) ≥2^3^n    u_2 =2^3 ≥2^3^(2−1)   ⇒ u_3 ≥2^3^2
un+1=(un+1un)3un3Ifun23n1un+1(23n1)3=23n1×23n1×23n1=23norun23n1un+123nu2=232321u3232

Leave a Reply

Your email address will not be published. Required fields are marked *