Menu Close

prove-by-induction-that-4-n-3-n-2-is-a-multiple-of-3-n-Z-




Question Number 73537 by Rio Michael last updated on 13/Nov/19
prove by induction that 4^n  + 3^n  +2 is a multiple of 3  ∀ n Z^+
$${prove}\:{by}\:{induction}\:{that}\:\mathrm{4}^{{n}} \:+\:\mathrm{3}^{{n}} \:+\mathrm{2}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{3} \\ $$$$\forall\:{n}\:{Z}^{+} \\ $$
Answered by mind is power last updated on 13/Nov/19
n=1 true  4+3+2=9  suppose ∀n∈N−{0} u_n =4^n +3^n +2 is multiple of 3  show 3∣u_(n+1)   u_(n+1) =4.4^n +3^n ∗3+2  =3.4^n +4^n +3^n +2+2.3^n   =4^n +3^n +2+3.4^n +3^n .2  =u_n +3(4^n +2.3^(n−1) )  since n≥1⇒3^(n−1) ∈N⇒3∣3.(4^n +2.3^(n−1) ) by hypothese 3∣U_n ⇒  3∣u_(n+1)
$${n}=\mathrm{1}\:{true} \\ $$$$\mathrm{4}+\mathrm{3}+\mathrm{2}=\mathrm{9} \\ $$$${suppose}\:\forall{n}\in\mathbb{N}−\left\{\mathrm{0}\right\}\:{u}_{{n}} =\mathrm{4}^{{n}} +\mathrm{3}^{{n}} +\mathrm{2}\:{is}\:{multiple}\:{of}\:\mathrm{3} \\ $$$${show}\:\mathrm{3}\mid{u}_{{n}+\mathrm{1}} \\ $$$${u}_{{n}+\mathrm{1}} =\mathrm{4}.\mathrm{4}^{{n}} +\mathrm{3}^{{n}} \ast\mathrm{3}+\mathrm{2} \\ $$$$=\mathrm{3}.\mathrm{4}^{{n}} +\mathrm{4}^{{n}} +\mathrm{3}^{{n}} +\mathrm{2}+\mathrm{2}.\mathrm{3}^{{n}} \\ $$$$=\mathrm{4}^{{n}} +\mathrm{3}^{{n}} +\mathrm{2}+\mathrm{3}.\mathrm{4}^{{n}} +\mathrm{3}^{{n}} .\mathrm{2} \\ $$$$={u}_{{n}} +\mathrm{3}\left(\mathrm{4}^{{n}} +\mathrm{2}.\mathrm{3}^{{n}−\mathrm{1}} \right) \\ $$$${since}\:{n}\geqslant\mathrm{1}\Rightarrow\mathrm{3}^{{n}−\mathrm{1}} \in\mathbb{N}\Rightarrow\mathrm{3}\mid\mathrm{3}.\left(\mathrm{4}^{{n}} +\mathrm{2}.\mathrm{3}^{{n}−\mathrm{1}} \right)\:{by}\:{hypothese}\:\mathrm{3}\mid{U}_{{n}} \Rightarrow \\ $$$$\mathrm{3}\mid{u}_{{n}+\mathrm{1}} \\ $$
Commented by Rio Michael last updated on 13/Nov/19
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *