Menu Close

prove-by-mathematical-induction-a-a-d-a-2d-a-n-1-d-1-2-n-2a-n-1-d-




Question Number 9471 by tawakalitu last updated on 09/Dec/16
prove by mathematical induction  a + (a + d) + (a + 2d) + ... + [a + (n − 1)d] = (1/2)n[2a + (n − 1)d]
provebymathematicalinductiona+(a+d)+(a+2d)++[a+(n1)d]=12n[2a+(n1)d]
Answered by mrW last updated on 10/Dec/16
for n=1:  a=^! (1/2)×1×[2a+(1−1)d]=a    for n+1:  a + (a + d) + (a + 2d) + ... + [a + (n − 1)d]+[a+(n+1−1)d]  =(1/2)n[2a + (n − 1)d]+[a+(n+1−1)d]  =(1/2)n[2a + (n − 1)d]+[a+nd]  =((n[2a + (n − 1)d]+2(a+nd))/2)  =((2na +n(n−1)d+2(a+nd))/2)  =((2(n+1)a +(n+1)nd)/2)  =(1/2)(n+1)[2a +(n+1−1)d]  ⇒proved!
forn=1:a=!12×1×[2a+(11)d]=aforn+1:a+(a+d)+(a+2d)++[a+(n1)d]+[a+(n+11)d]=12n[2a+(n1)d]+[a+(n+11)d]=12n[2a+(n1)d]+[a+nd]=n[2a+(n1)d]+2(a+nd)2=2na+n(n1)d+2(a+nd)2=2(n+1)a+(n+1)nd2=12(n+1)[2a+(n+11)d]proved!
Commented by tawakalitu last updated on 10/Dec/16
Thanks so much sir. God bless you.
Thankssomuchsir.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *