Menu Close

Prove-by-mathematical-induction-that-tbe-following-formula-is-correct-for-all-positive-integers-n-2-2-3-2-4-2-n-1-2-n-2-3-




Question Number 5722 by Rasheed Soomro last updated on 25/May/16
Prove by mathematical induction  that tbe following formula is correct  for all positive integers n:   ((2),(2) ) + ((3),(2) ) + ((4),(2) ) +...+ (((n+1)),((   2)) ) = (((n+2)),((   3)) )
Provebymathematicalinductionthattbefollowingformulaiscorrectforallpositiveintegersn:(22)+(32)+(42)++(n+12)=(n+23)
Commented by Yozzii last updated on 25/May/16
Let p(n): Σ_(i=1) ^n  (((i+1)),(2) )= (((n+2)),(3) )  (n∈N)    For n=1  lhs= (((1+1)),(2) )= ((2),(2) )=1  rhs= (((1+2)),(3) )= ((3),(3) )=1  lhs=rhs⇒p(n) true for n=1.    Assume p(n) is true for n=k  ⇒Σ_(i=1) ^k  (((i+1)),(2) )= (((k+2)),(3) )     For n=k+1  ⇒Σ_(i=1) ^(k+1)  (((i+1)),(2) )=Σ_(i=1) ^k  (((i+1)),(2) )+ (((k+2)),(2) )                           = (((k+2)),(3) )+ (((k+2)),(2) )                           =(k+2)!((1/((k−1)!3!))+(1/(k(k−1)!2!)))                           =(((k+2)!)/((k−1)!2!))((1/3)+(1/k))                           =(((k+2)!(k+3))/(k!3!))                           =(((k+3)!)/((k+3−3)!3!))  Σ_(i=1) ^(k+1)  (((i+1)),(2) )= (((k+3)),(3) )  ∴ p(k)⇒p(k+1).  ∴p(n) is true ∀n∈N by P.M.I.
Letp(n):ni=1(i+12)=(n+23)(nN)Forn=1lhs=(1+12)=(22)=1rhs=(1+23)=(33)=1lhs=rhsp(n)trueforn=1.Assumep(n)istrueforn=kki=1(i+12)=(k+23)Forn=k+1k+1i=1(i+12)=ki=1(i+12)+(k+22)=(k+23)+(k+22)=(k+2)!(1(k1)!3!+1k(k1)!2!)=(k+2)!(k1)!2!(13+1k)=(k+2)!(k+3)k!3!=(k+3)!(k+33)!3!k+1i=1(i+12)=(k+33)p(k)p(k+1).p(n)istruenNbyP.M.I.
Commented by Rasheed Soomro last updated on 25/May/16
Th^a nkS!
ThankS!

Leave a Reply

Your email address will not be published. Required fields are marked *