prove-Cos-2pi-7-Cos-4pi-7-Cos-8pi-7-1-2- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 67464 by lalitchand last updated on 27/Aug/19 proveCos(2π7)+Cos(4π7)+Cos(8π7)=−12 Answered by mind is power last updated on 27/Aug/19 Z7−1=0⇒(z−1)(1+z+z2+z3+z4+z5+z6)=0zk=ei2kπ70⩽k⩽61+z+z2+z3+z4+z5+z6=0⇔1⩽k⩽6∑k⩽6ei2kπ7=−1⇒cos(2π7)+cos(4π7)+cos(6π7)+cos(8π7)+cos(10π7)+cos(12π7)=−1cos(8π7)=cos(14π−6π7)=cos(2π−6π7)=cos(−6π7)=cos(6π7)sameideagiveuscos(2π7)=cos(12π7)cos(4π7)=cos(10π7)⇒cos(2π7)+cos(4π7)+cos(6π7)+cos(8π7)+cos(10π7)+cos(12π7)=2cos(2π7)+2cos(4π7)+2cos(8π7)=−1cos(2π7)+cos(4π7)+cos(8π7)=−12 Commented by Kunal12588 last updated on 27/Aug/19 justAMAZING… Commented by Kunal12588 last updated on 27/Aug/19 ������ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Calculate-when-a-b-are-positive-reals-f-a-b-0-1-t-a-t-b-lnt-dt-Next Next post: f-x-g-x-0-f-x-g-x-0-f-x-g-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.