Menu Close

Prove-i-2-1-1-i-2-1-2-




Question Number 3298 by prakash jain last updated on 09/Dec/15
Prove  Π_(i=2) ^∞ (1−(1/i^2 ))=(1/2)
Provei=2(11i2)=12
Commented by 123456 last updated on 10/Dec/15
1−(1/i^2 )=((i^2 −1)/i^2 )  L=Π_(i=2) ^∞ 1−(1/i^2 )  ln L=ln (Π_(i=2) ^∞ 1−(1/i^2 ))  =Σ_(i=2) ^∞ ln (1−(1/i^2 ))  =Σ_(i=2) ^∞ ln (i^2 −1)−2ln i
11i2=i21i2L=i=211i2lnL=ln(i=211i2)=i=2ln(11i2)=i=2ln(i21)2lni
Answered by prakash jain last updated on 10/Dec/15
continuing with comment from 123456  ln L=Σ_(i=2) ^∞ (ln(i^2 −1)−2ln(i))  =Σ_(i=2 ) ^∞ [ln(i−1)+ln (i+1)−2ln(i)]  This is telescoping sum.  ln L=−ln 2
continuingwithcommentfrom123456lnL=i=2(ln(i21)2ln(i))=i=2[ln(i1)+ln(i+1)2ln(i)]Thisistelescopingsum.lnL=ln2
Commented by prakash jain last updated on 10/Dec/15
ln 1 + ln 3     − ln 2 − ln 2               −2 ln 3  + ln 2  + ln 4            +ln 3     + ln 5 − 2 ln 4  So all terms cancel except −ln 2.
ln1+ln3ln2ln22ln3+ln2+ln4+ln3+ln52ln4Soalltermscancelexceptln2.

Leave a Reply

Your email address will not be published. Required fields are marked *