Menu Close

Prove-m-0-n-0-mn-2-m-n-4-




Question Number 3735 by prakash jain last updated on 19/Dec/15
Prove  Σ_(m=0) ^∞  Σ_(n=0) ^∞  ((mn)/2^(m+n) )=4
Provem=0n=0mn2m+n=4
Commented by prakash jain last updated on 19/Dec/15
As a part answer to Q3716.
AsapartanswertoQ3716.
Answered by prakash jain last updated on 19/Dec/15
Σ_(m=0) ^∞  (m/(2^m  )) Σ_(n=0) ^∞ (n/2^n )=Σ_(m=0) ^∞ ((2m)/2^m )=4  Q3734.
m=0m2mn=0n2n=m=02m2m=4Q3734.
Commented by Yozzii last updated on 19/Dec/15
What necessary and sufficient   conditions exist so that  Σ_(m∈N) Σ_(n∈N) f(m)g(n)={Σ_(m∈N) f(m)}{Σ_(n∈N) f(n)}   with f,g>0 ?  S=Σ_(m∈N) Σ_(n∈N) f(m)g(m)=Σ_(m∈N) {Σ_(n∈N) f(m)g(n)}  Given that m and are independent  variables, for each m we have   Σ_(n∈N) f(m)g(n)=f(m)×Σ_(n∈N) g(n)  ∴ S=Σ_(m∈N) {f(m)×Σ_(n∈N) g(n)}  If Σ_(n∈N) g(n) converges to l  ⇒S=Σ_(m∈N) f(m)×l=lΣ_(m∈N) f(m)  So, S={Σ_(m∈N) f(m)}×{Σ_(n∈N) g(n)} ?
WhatnecessaryandsufficientconditionsexistsothatmNnNf(m)g(n)={mNf(m)}{nNf(n)}withf,g>0?S=mNnNf(m)g(m)=mN{nNf(m)g(n)}Giventhatmandareindependentvariables,foreachmwehavenNf(m)g(n)=f(m)×nNg(n)S=mN{f(m)×nNg(n)}IfnNg(n)convergestolS=mNf(m)×l=lmNf(m)So,S={mNf(m)}×{nNg(n)}?
Commented by prakash jain last updated on 19/Dec/15
f(m) is constant for summation over n.  taking a constant out for summation is  always valid (even if the series is divergent).  absolute convergence is required for rearrangmnt  changing order of summation.
f(m)isconstantforsummationovern.takingaconstantoutforsummationisalwaysvalid(eveniftheseriesisdivergent).absoluteconvergenceisrequiredforrearrangmntchangingorderofsummation.
Commented by Yozzii last updated on 19/Dec/15
Thank you.
Thankyou.

Leave a Reply

Your email address will not be published. Required fields are marked *