prove-n-1-1-n-1-H-2n-2n-1-pi-8-ln-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 134016 by mnjuly1970 last updated on 26/Feb/21 ?prove:∑∞n=1(−1)n−1H2n2n+1=π8ln(2).. Answered by mnjuly1970 last updated on 27/Feb/21 ∑∞n=1(−1)nH2n2n+1=12∑∞n=1(inHnn+1)+12∑∞n=1((−1)ninHnn+1)=12∑∞n=1{inHn∫01xndx}+12∑∞n={(−i)nHn∫01xndx}=−12∫01ln(1−ix)1−ixdx−12∫01ln(1+ix)1+ixdx=14i[ln2(1−xi)]01−14i[ln2(1+xi)]01=14i(ln(2e−πi4))2−14i(ln(2eπi4))2=14i[(ln(2)−iπ4)2−(ln2)+iπ4)2]=14i(−4ln(2)(iπ4))=−π8ln(2)∴S=π8ln(2)…✓✓…m.n… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: I-0-1-c-x-2-x-1-x-2-dx-c-gt-1-Next Next post: Question-68487 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.