Menu Close

prove-n-1-1-n-1-H-2n-2n-1-pi-8-ln-2-




Question Number 134016 by mnjuly1970 last updated on 26/Feb/21
        ?prove :Σ_(n=1) ^∞ (((−1)^(n−1) H_(2n) )/(2n+1))=(π/8)ln(2)..
?prove:n=1(1)n1H2n2n+1=π8ln(2)..
Answered by mnjuly1970 last updated on 27/Feb/21
     Σ_(n=1) ^∞ (((−1)^n H_(2n) )/(2n+1))=(1/2)Σ_(n=1) ^∞ (((i^n H_n )/(n+1)))+(1/2)Σ_(n=1) ^∞ ((((−1)^n i^n H_n )/(n+1)))  =(1/2)Σ_(n=1) ^∞ {i^n H_n ∫_0 ^( 1) x^n dx}+(1/2)Σ_(n=) ^∞ {(−i)^n H_n ∫_0 ^( 1) x^n dx}   =−(1/2)∫_0 ^( 1) ((ln(1−ix))/(1−ix))dx−(1/2)∫_0 ^( 1) ((ln(1+ix))/(1+ix))dx  =(1/(4i))[ln^2 (1−xi)]_0 ^1 −(1/(4i))[ln^2 (1+xi)]_(0 ) ^1    =(1/(4i))(ln((√2) e^((−πi)/4) ))^2 −(1/(4i))(ln((√2) e^((πi)/4) ))^2   =(1/(4i))[(ln((√2) )−((iπ)/4))^2 −(ln(√(2))) +((iπ)/4))^2 ]  =(1/(4i))(−4ln((√2) )(((iπ)/4)))=((−π)/8)ln(2)    ∴ S=(π/8)ln(2)   ...✓✓           ...m.n...
n=1(1)nH2n2n+1=12n=1(inHnn+1)+12n=1((1)ninHnn+1)=12n=1{inHn01xndx}+12n={(i)nHn01xndx}=1201ln(1ix)1ixdx1201ln(1+ix)1+ixdx=14i[ln2(1xi)]0114i[ln2(1+xi)]01=14i(ln(2eπi4))214i(ln(2eπi4))2=14i[(ln(2)iπ4)2(ln2)+iπ4)2]=14i(4ln(2)(iπ4))=π8ln(2)S=π8ln(2)m.n

Leave a Reply

Your email address will not be published. Required fields are marked *