Menu Close

Prove-n-1-1-sinh-pin-2-1-6-1-2pi-




Question Number 143098 by mnjuly1970 last updated on 10/Jun/21
                    .....Prove....        Σ_(n=1) ^∞ ((1/(sinh(πn))))^2 =(1/6) −(1/(2π))   ...         ......
..Prove.n=1(1sinh(πn))2=1612π
Answered by Dwaipayan Shikari last updated on 10/Jun/21
4Σ_(n=1) ^∞ (e^(2πn) /((e^(2πn) −1)^2 ))  ((sin h(πx))/(πx))=Π_(n=1) ^∞ (1+(x^2 /n^2 ))  ⇒coth(πx)−(1/(πx))=Σ_(n=1) ^∞ (((2x)/n^2 )/(1+(x^2 /n^2 )))  ⇒((e^(2πx) +1)/(e^(2πx) −1))−(1/(πx))=2Σ_(n=1) ^∞ (x/(n^2 +x^2 ))  ⇒1+(2/(e^(2πx) −1))−(1/(πx))=2Σ_(n=1) ^∞ (x/((n^2 +x^2 )))  ((−4πe^(2πx) )/((e^(2πx) −1)^2 ))+(1/(πx^2 ))=−2Σ_(n=1) ^∞ ((n^2 +x^2 −2x)/((n^2 +x^2 )^2 ))  ⇒Σ_(x=1) ^∞ (e^(2πx) /((e^(2πx) −1)^2 ))=(1/4)Σ_(n=1) ^∞ (1/(π^2 x^2 ))+(1/2)Σ_(x=1) ^∞ Σ_(n=1) ^∞ (1/((n^2 +x^2 )))−((2x)/((n^2 +x^2 )^2 ))                                   =(1/4)(.(π^2 /(π^2 6)))+(1/2)Φ=(1/(24))+Φ...
4n=1e2πn(e2πn1)2sinh(πx)πx=n=1(1+x2n2)coth(πx)1πx=n=12xn21+x2n2e2πx+1e2πx11πx=2n=1xn2+x21+2e2πx11πx=2n=1x(n2+x2)4πe2πx(e2πx1)2+1πx2=2n=1n2+x22x(n2+x2)2x=1e2πx(e2πx1)2=14n=11π2x2+12x=1n=11(n2+x2)2x(n2+x2)2=14(.π2π26)+12Φ=124+Φ
Commented by Dwaipayan Shikari last updated on 10/Jun/21
Sorry sir . I  have tried
Sorrysir.Ihavetried
Commented by mnjuly1970 last updated on 10/Jun/21
  grateful for your effort mr payan..
gratefulforyoureffortmrpayan..

Leave a Reply

Your email address will not be published. Required fields are marked *