Menu Close

Prove-or-counterexample-that-if-a-finite-number-of-terms-of-a-series-are-given-then-a-infinite-number-of-formulas-for-n-th-term-exists-which-satisfy-the-given-finite-number-of-terms-For-example-3




Question Number 4720 by prakash jain last updated on 29/Feb/16
Prove or counterexample that if a finite number   of terms of a series are given then a infinite number  of formulas for n^(th)  term exists which satisfy  the given finite number of terms.  For example  33,9,33,44,?  4 terms are given if a_n =f(n) then there are  infinite number of distinct f_k (n) such for  all k.  f_k (1)=a_1 ,f_k (2)=a_2 ,f_k (3)=a_3 ,f_k (4)=a_4   and there exists m∈N such thatf_k (m)≠f_j (m)   if k≠j
Proveorcounterexamplethatifafinitenumberoftermsofaseriesaregiventhenainfinitenumberofformulasfornthtermexistswhichsatisfythegivenfinitenumberofterms.Forexample33,9,33,44,?4termsaregivenifan=f(n)thenthereareinfinitenumberofdistinctfk(n)suchforallk.fk(1)=a1,fk(2)=a2,fk(3)=a3,fk(4)=a4andthereexistsmNsuchthatfk(m)fj(m)ifkj
Answered by 123456 last updated on 29/Feb/16
if we have f such that for m terms  a_n =f(n)  n∈{1,...,m}  we can generate other function by  h(n)=C(x−1)...(x−m)g(x)+f(x)  for any g and C
ifwehavefsuchthatformtermsan=f(n)n{1,,m}wecangenerateotherfunctionbyh(n)=C(x1)(xm)g(x)+f(x)foranygandC

Leave a Reply

Your email address will not be published. Required fields are marked *