Menu Close

prove-or-disprove-i-1-n-p-1-i-p-2-p-1-p-2-P-1-2-np-1-n-1-p-2-1-2-n-n-1-p-2-p-1-n-2-n-2-p-1-p-2-p-i-a-1-a-2-a-n-a-i-1-2-p-1-Z-p-1-0-n-Z-n-2-n-k-0-k-2-p-




Question Number 3794 by Filup last updated on 21/Dec/15
prove or disprove:     Σ_(i=1) ^n p_1 i=p_2   p_1 ,p_2 ∈P    (1/2)np_1 (n+1)=p_2   (1/2)n(n+1)=(p_2 /p_1 )  n^2 +n=(2/p_1 )p_2     p_i ≠a_1 a_2 ...a_n      a_i ≠1  ∴(2/p_1 )∉Z   p_1 ≠0    n∈Z  n^2 +n−k=0  k=(2/p_1 )p_2   ∴n=((−1±(√(1+4k)))/2)  ∴n=((−1±(√(1+(8/p_1 )p_2 )))/2)  ∴n∉Z    ∴Σ_(i=1) ^n p_1 i≠p_2     Is this correct? Or am I wrong?
proveordisprove:ni=1p1i=p2p1,p2P12np1(n+1)=p212n(n+1)=p2p1n2+n=2p1p2pia1a2anai12p1Zp10nZn2+nk=0k=2p1p2n=1±1+4k2n=1±1+8p1p22nZni=1p1ip2Isthiscorrect?OramIwrong?
Commented by prakash jain last updated on 21/Dec/15
Σ_(i=1) ^n p_1 i=X=((n(n+1)p_1 )/2)  p_1  divides X and  ((n(n+1))/2)  is  an integer(>1 for n>1) divides X.  So X∉P for n>1.
ni=1p1i=X=n(n+1)p12p1dividesXandn(n+1)2isaninteger(>1forn>1)dividesX.SoXPforn>1.
Commented by prakash jain last updated on 21/Dec/15
Your rational is also correct since if  ((n(n+1))/2)p_1  is a prime than n is not an integer.  so ((n(n+1))/2)p_1 ∉P for ∀n∈N and n>1
Yourrationalisalsocorrectsinceifn(n+1)2p1isaprimethannisnotaninteger.son(n+1)2p1PfornNandn>1
Commented by Yozzii last updated on 21/Dec/15
s=Σ_(i=1) ^n i gives triangular numbers and   hence s∈N. Now, p_2 ∈P and p_1 ∈P.  Therefore, sp_1 =p_2  is true iff s=1  and p_1 =p_2 . Otherwise, sp_1 ≠p_2  since  p_2 =p_1 s is suggestive of p_2 ∉P if s>1   or the given equation is an inequation  if p_1 ≠p_2  and s≥1.
s=ni=1igivestriangularnumbersandhencesN.Now,p2Pandp1P.Therefore,sp1=p2istrueiffs=1andp1=p2.Otherwise,sp1p2sincep2=p1sissuggestiveofp2Pifs>1orthegivenequationisaninequationifp1p2ands1.
Commented by Yozzii last updated on 21/Dec/15
If p_1 =p_2 ,  n=((−1±(√9))/2)=((±3−1)/2)=1,−2  n∈N⇒n=1 only.  This should be added to the proof  I think.
Ifp1=p2,n=1±92=±312=1,2nNn=1only.ThisshouldbeaddedtotheproofIthink.
Commented by Filup last updated on 21/Dec/15
Thank you!
Thankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *