Menu Close

Prove-or-disprove-that-2k-1-n-O-k-n-Z-




Question Number 8468 by FilupSmith last updated on 12/Oct/16
Prove or disprove that:  (2k+1)^n ∈O      ∀k,n∈Z
Proveordisprovethat:(2k+1)nOk,nZ
Answered by Rasheed Soomro last updated on 12/Oct/16
(2k+1)^n = ((n),(0) )(2k)^n + ((n),(1) )(2k)^(n−1) +...+ ((n),(r) )(2k)^(n−r)                       + ....+ (((    n)),((n−1)) )(2k)+1                  =(2k)( ((n),(0) )(2k)^(n−1) + ((n),(1) )(2k)^(n−2) +...+ ((n),(r) )(2k)^(n−r−1)                       + ....+ (((    n)),((n−1)) ) )+1                     =2km+1∈O  Hence (2k+1)^n ∈O  Proved.
(2k+1)n=(n0)(2k)n+(n1)(2k)n1++(nr)(2k)nr+.+(nn1)(2k)+1=(2k)((n0)(2k)n1+(n1)(2k)n2++(nr)(2k)nr1+.+(nn1))+1=2km+1OHence(2k+1)nOProved.
Commented by FilupSmith last updated on 12/Oct/16
Thanks. I was certain this was how to  solve this problem!
Thanks.Iwascertainthiswashowtosolvethisproblem!

Leave a Reply

Your email address will not be published. Required fields are marked *