Menu Close

Prove-sec-2-x-4-n-0-1-2n-1-pi-2x-2-1-2n-1-pi-2x-2-




Question Number 142595 by qaz last updated on 02/Jun/21
Prove ::  sec^2 x=4Σ_(n=0) ^∞ {(1/([(2n+1)π−2x]^2 ))+(1/([(2n+1)π+2x]^2 ))}
Prove::sec2x=4n=0{1[(2n+1)π2x]2+1[(2n+1)π+2x]2}
Answered by Dwaipayan Shikari last updated on 02/Jun/21
tanx=(1/((π/2)−x))−(1/((π/2)+x))+(1/(((3π)/2)−x))−(1/(((3π)/2)+x))+..  =Σ_(n=0) ^∞ (1/((2n+1)(π/2)−x))−(1/((2n+1)(π/2)+x))  D. b.s.w.r.t x  sec^2 x=4Σ_(n=0) ^∞ (1/(((2n+1)π−2x)^2 ))+(1/(((2n+1)π+2x)^2 ))
tanx=1π2x1π2+x+13π2x13π2+x+..=n=01(2n+1)π2x1(2n+1)π2+xD.b.s.w.r.txsec2x=4n=01((2n+1)π2x)2+1((2n+1)π+2x)2

Leave a Reply

Your email address will not be published. Required fields are marked *