Menu Close

Prove-sin-a-sin-a-14pi-3-sin-a-8pi-3-0-




Question Number 1808 by alib last updated on 04/Oct/15
Prove  sin (a)+sin (a+((14π)/3))+sin (a−((8π)/3))=0/
Provesin(a)+sin(a+14π3)+sin(a8π3)=0/
Answered by 112358 last updated on 05/Oct/15
Using the compound angle formula  sin(x±y)=sinxcosy±cosxsiny we get  sin(a+((14π)/3))=sin(a)cos(((14π)/3))+cos(a)sin(((14π)/3))   ((14π)/3)=4π+((2π)/3) so that   sin(((14π)/3))=sin4πcos((2π)/3)+sin((2π)/3)cos4π                     =0+((√3)/2)  sin(14π/3)=(√3)/2  Using cos(x±y)=cosxcosy∓sinxsiny  we obtain   cos((14π)/3)=cos4πcos((2π)/3)−sin4πsin((2π)/3)                 =−(1/2)−0  cos(14π/3)=1/2  ∴ sin(a+((14π)/3))=(1/2)(−sina+(√3)cosa)  Next we get  sin(a−((8π)/3))=sin(a)cos((8π)/3)−sin((8π)/3)cos(a)                        =sin(a)cos(2π+((2π)/3))−sin(2π+((2π)/3))cos(a)                        =−(1/2)sina−((√3)/2)cosa                        =−(1/2)(sina+(√3)cosa)  The left−hand expression becomes  sin(a)+(1/2)(−sina+(√3)cosa)−(1/2)(sina+(√3)cosa)=sina−sina=0
Usingthecompoundangleformulasin(x±y)=sinxcosy±cosxsinywegetsin(a+14π3)=sin(a)cos(14π3)+cos(a)sin(14π3)14π3=4π+2π3sothatsin(14π3)=sin4πcos2π3+sin2π3cos4π=0+32sin(14π/3)=3/2Usingcos(x±y)=cosxcosysinxsinyweobtaincos14π3=cos4πcos2π3sin4πsin2π3=120cos(14π/3)=1/2sin(a+14π3)=12(sina+3cosa)Nextwegetsin(a8π3)=sin(a)cos8π3sin8π3cos(a)=sin(a)cos(2π+2π3)sin(2π+2π3)cos(a)=12sina32cosa=12(sina+3cosa)Thelefthandexpressionbecomessin(a)+12(sina+3cosa)12(sina+3cosa)=sinasina=0
Commented by alib last updated on 05/Oct/15
so the equation is not equal to zero?
sotheequationisnotequaltozero?
Commented by 112358 last updated on 05/Oct/15
Mistake corrected.
Mistakecorrected.

Leave a Reply

Your email address will not be published. Required fields are marked *