Menu Close

prove-that-0-0-t-2-e-nt-e-t-1-dt-1-n-2-for-n-integr-not-0-




Question Number 74799 by mathmax by abdo last updated on 30/Nov/19
prove that 0≤∫_0 ^∞    ((t^2  e^(−nt) )/(e^t −1))dt ≤(1/n^2 )  for n integr not 0
provethat00t2entet1dt1n2fornintegrnot0
Answered by mind is power last updated on 30/Nov/19
∫_0 ^(+∞) ((t^2 e^(−nt) )/(e^t −1))≤(1/n^2 )  =∫_0 ^(+∞) ((t^2 e^(−(n+1)t) )/(1−e^(−t) ))dt  =∫_0 ^(+∞) t^2 .Σ_(k≥0) e^(−t(k+n+1)t) dt    =Σ_(k≥0) ∫_0 ^(+∞) t^2 e^(−(k+n+1)t) dt  =Σ_(k≥0) ∫_0 ^(+∞) ((u^2 e^(−t) )/((k+n+1)^3  ))dt=Σ_(k≥0) (2/((k+n+1)^2 ))  claim  (k+n+1)^3 ≥(k+n+1)^2 (k+n)^2 .(2/((2k+2n+1)))  proff⇔(k+n+1)(((2k+2n+1)/2))≥(k+n)^2  clear  ⇒∀k∈N,∀n∈N^∗   (k+n+1)^3 ≥(k+n+1)^2 (k+n)^2 .(2/(2k+2n+1))  ⇔(2/((k+n+1)^3 ))≤((2k+2n+1)/((k+n+1)^2 (k+n)^2 ))=(((k+n+1)^2 −(k+n)^2 )/((k+n+1)^2 (k+n)^2 ))=(1/((k+n)^2 ))−(1/((k+n+1)^2 ))  ⇒Σ_(k≥0) (2/((k+n+1)^3 ))≤Σ_(k≥0) (1/((k+n)^2 ))−(1/((k+n+1)^2 ))=(1/n^2 )  ⇒∫_0 ^(+∞) ((t^2 e^(−nt) )/(e^t −1))dt<(1/n^2 )  ((t^2 e^(−nt) )/(e^t −1))≥0⇒∫_0 ^(+∞) t^2 (e^(−nt) /(e^t −1))dt>0
0+t2entet11n2=0+t2e(n+1)t1etdt=0+t2.k0et(k+n+1)tdt=k00+t2e(k+n+1)tdt=k00+u2et(k+n+1)3dt=k02(k+n+1)2claim(k+n+1)3(k+n+1)2(k+n)2.2(2k+2n+1)proff(k+n+1)(2k+2n+12)(k+n)2clearkN,nN(k+n+1)3(k+n+1)2(k+n)2.22k+2n+12(k+n+1)32k+2n+1(k+n+1)2(k+n)2=(k+n+1)2(k+n)2(k+n+1)2(k+n)2=1(k+n)21(k+n+1)2k02(k+n+1)3k01(k+n)21(k+n+1)2=1n20+t2entet1dt<1n2t2entet100+t2entet1dt>0
Commented by abdomathmax last updated on 01/Dec/19
thank you sir.
thankyousir.
Commented by mind is power last updated on 02/Dec/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *