Menu Close

prove-that-0-1-1-x-7-1-3-dx-0-1-1-x-3-1-7-dx-




Question Number 76680 by Tony Lin last updated on 29/Dec/19
prove that:   ∫_0 ^1 (1−x^7 )^(1/3) dx=∫_0 ^1 (1−x^3 )^(1/7) dx
provethat:01(1x7)13dx=01(1x3)17dx
Commented by mr W last updated on 29/Dec/19
see Q#76232, 76146  ∫_a ^b y(x) dx=∫_c ^d x(y) dy  y=(1−x^7 )^(1/3)   ⇒y^3 =1−x^7   ⇒x=(1−y^3 )^(1/7)   y(a=0)=1=d  y(b=1)=0=c  ∫_0 ^1 y(x)dx=∫_0 ^1 (1−x^7 )^(1/3) dx  =∫_0 ^1 x(y)dy=∫_0 ^1 (1−y^3 )^(1/7) dy  =∫_0 ^1 (1−x^3 )^(1/7) dx
You can't use 'macro parameter character #' in math modeaby(x)dx=cdx(y)dyy=(1x7)13y3=1x7x=(1y3)17y(a=0)=1=dy(b=1)=0=c01y(x)dx=01(1x7)13dx=01x(y)dy=01(1y3)17dy=01(1x3)17dx
Commented by mr W last updated on 29/Dec/19
both integrals represent the same  shaded area:
bothintegralsrepresentthesameshadedarea:
Commented by mr W last updated on 29/Dec/19
Commented by Tony Lin last updated on 29/Dec/19
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *