Menu Close

prove-that-0-1-2-dx-1-x-2-log-golden-ratio-




Question Number 139912 by mnjuly1970 last updated on 02/May/21
       prove that::          𝛀 :=∫_0 ^( (1/2)) (dx/( (√(1+x^2 )))) =log(ϕ)          ϕ:=golden ratio ...
$$ \\ $$$$\:\:\:\:\:{prove}\:{that}::\: \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\Omega}\::=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:={log}\left(\varphi\right) \\ $$$$\:\:\:\:\:\:\:\:\varphi:={golden}\:{ratio}\:… \\ $$$$ \\ $$
Answered by qaz last updated on 02/May/21
∫_0 ^(1/2) (dx/( (√(1+x^2 ))))=ln(x+(√(1+x^2 )))∣_0 ^(1/2) =ln(((1+(√5))/2))
$$\int_{\mathrm{0}} ^{\mathrm{1}/\mathrm{2}} \frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}={ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\mid_{\mathrm{0}} ^{\mathrm{1}/\mathrm{2}} ={ln}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$
Commented by mnjuly1970 last updated on 02/May/21
  very nice ...
$$\:\:{very}\:{nice}\:… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *