Menu Close

prove-that-0-1-e-x-1-e-2x-dx-x-ln-2-1-4-4-2pi-n-1-2n-1-2n-1-n-1-e-




Question Number 140055 by mnjuly1970 last updated on 03/May/21
          prove  that :          Ω:= ∫_0 ^( ∞) ((1−e^(−x) )/(1+e^(2x) )) .(dx/x) =ln(((Γ^2 ((1/4)))/(4(√(2π)))) )   Θ:= Π_(n=1) ^∞ (((2n+1)/(2n)))^((−1)^(n+1) ) =^(??)  e^Ω
provethat:Ω:=01ex1+e2x.dxx=ln(Γ2(14)42π)Θ:=n=1(2n+12n)(1)n+1=??eΩ
Answered by Kamel last updated on 03/May/21
Commented by mnjuly1970 last updated on 04/May/21
thank you so much mr Kamel
thankyousomuchmrKamel
Answered by Dwaipayan Shikari last updated on 03/May/21
ϑ(α)=∫_0 ^∞ ((1−e^(−αx) )/(1+e^(2x) )).(dx/x)  ϑ′(α)=∫_0 ^∞ (e^(−αx) /(1+e^(2x) ))dx=Σ_(n=1) ^∞ ∫_0 ^∞ (−1)^(n+1) e^(−2nx−αx)    =Σ_(n=1) ^∞  (((−1)^(n+1) )/(2n+α))=((1/(2+α))−(1/(4+α))+(1/(6+α))−(1/(8+α))+(1/(10+α))−(1/(12+α))+..)  =(1/4)(Σ_(n=0) ^∞ (1/(n+(1/2)+(α/4)))−(1/(n+1+(α/4))))=(1/4)(ψ((α/4)+1)−ψ((α/4)+(1/2)))  ϑ(α)=log(Γ((α/4)+1))−log(Γ((α/4)+(1/2)))+C  ϑ(0)=log(Γ(1))−log(Γ((1/2)))+C=0⇒C=log((√π))  ϑ(1)=log(((Γ((5/4))(√π))/(Γ((3/4)))))=log(((Γ^2 ((1/4)))/( (√π))).(((√2)π)/4))=log(((Γ^2 ((1/4)))/(4(√(2π)))))
ϑ(α)=01eαx1+e2x.dxxϑ(α)=0eαx1+e2xdx=n=10(1)n+1e2nxαx=n=1(1)n+12n+α=(12+α14+α+16+α18+α+110+α112+α+..)=14(n=01n+12+α41n+1+α4)=14(ψ(α4+1)ψ(α4+12))ϑ(α)=log(Γ(α4+1))log(Γ(α4+12))+Cϑ(0)=log(Γ(1))log(Γ(12))+C=0C=log(π)ϑ(1)=log(Γ(54)πΓ(34))=log(Γ2(14)π.2π4)=log(Γ2(14)42π)
Commented by mnjuly1970 last updated on 03/May/21
  zendeh bashid(be alive) mr payan grateful..
zendehbashid(bealive)mrpayangrateful..

Leave a Reply

Your email address will not be published. Required fields are marked *