Prove-that-0-arctanx-x-log2-2-dx-pi- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 75793 by ~blr237~ last updated on 17/Dec/19 Provethat∫0∞(arctanxxlog2)2dx=π Commented by mathmax by abdo last updated on 18/Dec/19 letI=∫0∞(arctanxxln(2))2dx⇒ln(2)I=∫0∞arctan2xx2dxbypartsu′=1x2andv=arctan2(x)⇒ln(2)I=[−1xarctan2(x)]0+∞−∫0∞(−1x)2arctan(x)1+x2dx=2∫0∞arcctan(x)x(1+x2)dx⇒I=2ln(2)∫0∞arctan(x)x(1+x2)dx=arctanx=u2ln(2)∫0π2utan(u)(1+tan2u)(1+tan2u)du=2ln(2)∫0π2utanudu=2ln(2)∫0π2ucosusinudubypartsf=uandg′=cosusinuln(2)2I=∫0π2ucosusinudu=[uln(sinu)]0π2−∫0π2ln(sinu)du=−(−π2ln(2))ln(2)2I=πln(2)2⇒I=π Answered by mind is power last updated on 17/Dec/19 =[−arctan2(x)xlog(2)]+1log(2)∫0+∞2arctan(x)x(x2+1)dx=2log(2)∫0+∞arcran(x)x(x2+1)dxu=arcran(x)⇒dx=(1+tg2(u))du⇔2log(2)∫0π2utg(u)du=2log(2)∫0π2ucos(u)sin(u)dubypart⇔2log(2)[ulog(sin(u))]0π2−2log(2)∫0π2log(sin(u))du=−2log(2)∫0π2log(sin(u))du∫0π2log(sin(u))du=−log(2)π2donemanyTimessoWeget−2log(2).−log(2)2.π=π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-10250Next Next post: Find-out-0-argsh-x-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.