Menu Close

Prove-that-0-arctanx-x-log2-2-dx-pi-




Question Number 75793 by ~blr237~ last updated on 17/Dec/19
Prove that ∫_0 ^∞ (((arctanx)/(x(√(log2)))))^2 dx= π
Provethat0(arctanxxlog2)2dx=π
Commented by mathmax by abdo last updated on 18/Dec/19
let I =∫_0 ^∞   (((arctanx)/(x(√(ln(2))))))^2 dx ⇒ ln(2)I =∫_0 ^∞  ((arctan^2 x)/x^2 )dx  by parts  u^′ =(1/x^2 ) and v=arctan^2 (x) ⇒ln(2)I =[−(1/x) arctan^2 (x)]_0 ^(+∞)   −∫_0 ^∞ (−(1/x))((2arctan(x))/(1+x^2 ))dx=2∫_0 ^∞   ((arcctan(x))/(x(1+x^2 )))dx ⇒   I=(2/(ln(2)))∫_0 ^∞   ((arctan(x))/(x(1+x^2 )))dx  =_(arctanx=u) (2/(ln(2)))  ∫_0 ^(π/2)   (u/(tan(u)(1+tan^2 u)))(1+tan^2 u)du  =(2/(ln(2)))∫_0 ^(π/2)   (u/(tanu))du =(2/(ln(2)))∫_0 ^(π/2) u ((cosu)/(sinu))du   by parts f=u and g^′ =((cosu)/(sinu))  ((ln(2))/2)I =∫_0 ^(π/2) u ((cosu)/(sinu))du=[u ln(sinu)]_0 ^(π/2)  −∫_0 ^(π/2) ln(sinu)du=−(−(π/2)ln(2))  ((ln(2))/2)I =((πln(2))/2) ⇒ I =π
letI=0(arctanxxln(2))2dxln(2)I=0arctan2xx2dxbypartsu=1x2andv=arctan2(x)ln(2)I=[1xarctan2(x)]0+0(1x)2arctan(x)1+x2dx=20arcctan(x)x(1+x2)dxI=2ln(2)0arctan(x)x(1+x2)dx=arctanx=u2ln(2)0π2utan(u)(1+tan2u)(1+tan2u)du=2ln(2)0π2utanudu=2ln(2)0π2ucosusinudubypartsf=uandg=cosusinuln(2)2I=0π2ucosusinudu=[uln(sinu)]0π20π2ln(sinu)du=(π2ln(2))ln(2)2I=πln(2)2I=π
Answered by mind is power last updated on 17/Dec/19
=[((−arctan^2 (x))/(xlog(2)))]+(1/(log(2)))∫_0 ^(+∞) ((2arctan(x))/(x(x^2 +1)))dx  =(2/(log(2)))∫_0 ^(+∞) ((arcran(x))/(x(x^2 +1)))dx  u=arcran(x)⇒dx=(1+tg^2 (u))du  ⇔(2/(log(2)))∫_0 ^(π/2) (u/(tg(u)))du=(2/(log(2)))∫_0 ^(π/2) ((ucos(u))/(sin(u)))du  by part⇔  (2/(log(2)))[ulog(sin(u))]_0 ^(π/2) −(2/(log(2)))∫_0 ^(π/2) log(sin(u))du  =−(2/(log(2)))∫_0 ^(π/2) log(sin(u))du  ∫_0 ^(π/2) log(sin(u))du=−log(2)(π/2) done many Times  so We get −(2/(log(2))).((−log(2))/2).π=π
=[arctan2(x)xlog(2)]+1log(2)0+2arctan(x)x(x2+1)dx=2log(2)0+arcran(x)x(x2+1)dxu=arcran(x)dx=(1+tg2(u))du2log(2)0π2utg(u)du=2log(2)0π2ucos(u)sin(u)dubypart2log(2)[ulog(sin(u))]0π22log(2)0π2log(sin(u))du=2log(2)0π2log(sin(u))du0π2log(sin(u))du=log(2)π2donemanyTimessoWeget2log(2).log(2)2.π=π

Leave a Reply

Your email address will not be published. Required fields are marked *