Menu Close

prove-that-0-e-cos-x-sin-sin-x-x-dx-pi-2-e-1-




Question Number 141062 by mnjuly1970 last updated on 15/May/21
            prove that::   φ:=∫_0 ^( ∞) ((e^(cos(x)) sin(sin(x)))/x) dx=(π/2)(e−1)
provethat::ϕ:=0ecos(x)sin(sin(x))xdx=π2(e1)
Commented by mindispower last updated on 15/May/21
always pleasur have nice day“ Ai^(..) d Mobarak”
alwayspleasurhavenicedayAid..Mobarak
Commented by mnjuly1970 last updated on 15/May/21
  thank you so much sir  power your Aid mobarak ..
thankyousomuchsirpoweryourAidmobarak..
Commented by mindispower last updated on 15/May/21
starte withe your previous result quation  Σ_(n≥1) a^n ((sin(nx))/(n!))=e^(acos(x)) sin(asin(x)  φ=∫_0 ^∞ (1/x)Σ_(n≥1) (a^n sin(nx))/(n!))_(a=1) dx  =Σ_(n≥1) ∫_0 ^∞ ((sin(nx))/(x(n!)))dx=Σ_(n≥1) (1/(n!))∫_0 ^∞ ((sin(nx))/(nx))d(nx)  =Σ_(n≥1) (1/(n!)).(π/2)=(π/2)(Σ_(n≥0) (1/(n!))−1)=(π/2)(e−1)
startewitheyourpreviousresultquationn1ansin(nx)n!=eacos(x)sin(asin(x)ϕ=01xn1(ansin(nx))/(n!))a=1dx=n10sin(nx)x(n!)dx=n11n!0sin(nx)nxd(nx)=n11n!.π2=π2(n01n!1)=π2(e1)
Commented by mnjuly1970 last updated on 15/May/21
 grateful mr power....
gratefulmrpower.
Answered by Dwaipayan Shikari last updated on 15/May/21
e^(cos(x)) sin(sinx)=Σ((sin(nx))/(n!))  ∫_0 ^∞ Σ_(n=1) ((sin(nx))/(xn!))=(π/2)Σ_(n=1) ^∞ (1/(n!))=(π/2)(e−1)
ecos(x)sin(sinx)=Σsin(nx)n!0n=1sin(nx)xn!=π2n=11n!=π2(e1)
Commented by mnjuly1970 last updated on 15/May/21
     mercey mr Payan...
merceymrPayan

Leave a Reply

Your email address will not be published. Required fields are marked *